Меню

Для очистки воздуха от примесей оксида серы 4 можно использовать



Очистка выбросов в атмосферу от примесей (СО, СО2, NOх, SO2). Существующие методы.

Методы очистки атмосферы определяются природой загрязнителей. Ряд современных технологических процессов связан с измельчением веществ. При этом часть материалов переходит в пыль, которая вредна для здоровья и наносит значительный материальный ущерб вследствие потери ценных продуктов.
Пыль, осевшая в индустриальных городах, преимущественно содержит 20 % оксида железа, 15 % оксида кремния и 5 % сажи . Промышленная пыль включает также оксиды различных металлов и неметаллов, многие из которых токсичны. Это оксиды марганца, свинца, молибдена, ванадия, сурьмы, мышьяка, теллура. Пыль и аэрозоли не только затрудняют дыхание, но и приводят к климатическим изменениям, поскольку отражают солнечное излучение и затрудняют отвод тепла от Земли.

Принципы работы пылеулавливающих аппаратов основаны на использовании различных механизмов осаждения частиц: гратационном осаждении, осаждении под действием центробежной силы, диффузионном осаждении, электрическом (ионизационом) осаждении и некоторых других. По способу улавливай пыли аппараты бывают сухой, мокрой и электрической основной критерий выбора типа оборудования физикохимические свойства пыли, степень очистки, параметры газового потока (скорость поступления). Для газов, содержащих горючие и ядовятые примеси, лучше использовать аппараты мокрой очистки.

Основным направлением защиты атмосферы от загрязнений является создание малоотходных технологий с замкнутыми циклами производства и комплексным использованием сырья. Но это в идеале, в настоящее время очистка газов от загрязнений является пока единственным эффективным методом обезвреживания атмосферы. Существующие методы очистки можно разделить на две группы: некаталитические (абсорбционные и адсорбционные) и каталитические. Рассмотрим ряд методов химической очистки от наиболее распространенных загрязнителей.

Очистка газов от диоксида углерода (СО2)

1. Абсорбция водой. Способ прост и дешев, однако эффективность очистки мала, так как максимальная поглотительная способность воды — 8 кг СО2 на 100 кг воды.
2. Поглощение растворами этаноламинов. В качестве поглотителя обычно применяют моноэтаноламин, хотя триэтаноламин обладает большей реакционной способностью.
3. Холодный метанол является хорошим поглотителем СО2 при 35 °с.
4. Очистка цеолитами типа СаА. Молекулы СО2 очень малы, поэтому для извлечения СО2 из природного газа и удаления продуктов жизнедеятельности (влаги и СО2) в современных экологически изолированных системах (космические корабли, подводные лодки и т. д.) используются молекулярные сита.

Очистка газов от оксида углерода (СО)

  • Дожигание на Pt/Pd-катализаторе
  • Конверсия (адсорбционный метод)
  • Каталитический дожиг

Очистка газов от оксидов азота (NOx)

В химической промышленности очистка от оксидов азота л 80 % осуществляется за счет превращений на катализаторе:

1. Окислительные методы основаны на реакции окисления oксидов азота с последующим поглощением водой:

  • Окисление озоном в жидкой фазе.
  • Окисление кислородом при высокой температуре.

2. Восстановительные методы основаны на восстановлении оксидов азота до нейтральных продуктов в присутствии катализаторов или под действием высоких температур в присутствии восстановителей.

3. Сорбционные методы:

  • Адсорбция оксидов азота водяными растворами щелочей и СаСО3.
  • Адсорбция оксидов азота твердыми сорбентами (бурые угли, торф, силикагели).

Очистка газов от диоксида серы (SO2)

1. Аммиачные методы очистки. Они основаны на взаимодействии SO2 с водным раствором сульфита аммония. Образовавшийся бисульфит легко разлагается кислотой.
2. Метод нейтрализации SO2. Он основан на поглощении Wi раствором соды или извести.
3. Каталитические методы. Основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности катализаторов:

  • пиролюзитный метод — окисление SO2 кислородом в жидкой фазе в присутствии катализатора — пиролюзита (МnО2); метод может использоваться для получения серной кислоты.
  • озонокаталитический метод — разновидность пиролюзитного метода и отличается от него тем, что окисление Мn 2+ в Мn 3+ осуществляют в озоновоздушной смеси.

Эффективность очистки зависит от множества факторов:

  • парциальных давлений SO2 и O2 в очищаемой газовой смеси
  • температуры отходящих газов
  • наличия и свойств твердых и газообразных компонентов;
  • объема очищаемых газов; наличия и доступности компонентов
  • требуемой степени очистки газа и др.

Источник

Очистка выбросов от оксидов серы

Существует три основных способа очистки выбросов от оксидов серы[11, с. 44]:

–абсорбционный – сорбентом является жидкость;

–адсорбционный – сорбентом является твёрдое тело;

–каталитические методы с получением S и серной кислоты.

Абсорбционные способы – это наиболее распространённые способы очистки газов от SO2. Отличаются составом используемого сорбента, конструкциями аппаратов и полученными побочными продуктами. Установками именно такого типа оборудовано до 90-94 % всех имеющихся сероочисток отходящих газов, несмотря на их относительную дороговизну (для ТЭС доля капиталозатрат – 15-20 % от стоимости всего энергоблока).

Отходящие газы с точки зрения содержания в них SO2 условно подразделяются на «крепкие» (SO2> 3,5 %) и «Слабые» (SO2

1 – скруббер; 2 – пылеуловитель; 3 – форсунка; 4 – гидрозатвор; 5, 10 – фильтр для отделения крупных частиц; 6 – цилиндрический сборник; 7 – насос; 8 – гидроциклон; 9 – вакуум-фильтр

Рисунок 5.1 – Принципиальная схема очистки газов от SO2 абсорбционным (известковым) методом

Повышают эффективность процесса очистки абсорбционным методом от SO2:

– турбулизацией газового потока;

– проведением процесса в присутствии марганцевого или железного катализатора;

– добавлением в поглотительный раствор:

хлорида кальция 20-30 %

Способ очистки широко распространён за рубежом. Побочным продуктом обезвоживания осадка в гидроциклонах и ленточных вакуум-фильтрах является гипс. Гипс в Японии и ФРГ используется в строительстве и в качестве удобрений. В США идёт в шлам.

Метод достаточно эффективен (85-90 %), прост по аппаратурному оформлению, отличается доступностью и дешевизной сорбентов и сравнительно невысокими эксплуатационными затратами. Однако он не лишен и серьезных недостатков, главным из которых является образование большого количества шламов (примерно 780 т/год на 1 МВт мощности ТЭС), которые у нас как правило не используются. Второй существенный недостаток – зарастание аппаратов отложениями гипса. Для борьбы с отложениями увеличивают расход поглотителя, применяют скруббера с минимальной рабочей поверхностью.

Читайте также:  Методы очистки воздуха от газа

Помимо известковых растворов, в качестве абсорбента SO2 используется побочный продукт коксования – аммиачная вода. В этом случае получают товарный продукт сульфат аммония, который используется качестве удобрения. Эффективность процесса невелика, разработано техническое решение – интенсификация процесса взаимодействия оксидов серы с аммиаком ионизацией SO2 направленным пучком электронов.

Несколько слов о других мокрых методах сероочистки. Водный метод малоэффективен и используется редко (в случае применения щелочных вод, например, воды гидрозолоулавливания ТЭЦ). Сульфитные методы включают в себя большое количество способов, общим для которых является абсорбция SO2 сульфит-бисульфитными растворами и одинаковый механизм поглощения SO2, а различным – хемосорбенты (здесь различают аммиачные, магнезитовые, цинковый и натриевый методы). Положительным отличием этих методов от известняковых (известковых) является в большинстве случаев их рекуперативность – на основе извлекающегося из газов SO2получают H2SO4, элемент S, сжиженный SO2 и сульфаты.

При использовании органических жидкостей (ароматических аминов – растворов ксилидина и диметиламина) также получают товарные продукты (H2SO4). Методы однако малоперспективны для газов черной металлургии (с низким содержанием SO2) и более пригодны для цветной металлургии.

С использованием известкового метода работает большинство сероочисток ЧМ СНГ, например, самая крупная из них – по очистке аглогазов от SO2 на ММК производительностью порядка 3 млн.м 3 /ч.

Наиболее перспективным способом очистки газов от оксидов серы является мокросухой способ. Улавливание идет суспензией. Активный реагент – кальцинированная сода и известь. Улавливание кристаллов гипса осуществляется в тканевых фильтрах и электрофильтрах. Эффективность мокросухого способа улавливания SO2 составляет 90 %.

Адсорбционный способ очистки газов от оксидов серы осуществляется путём вдувания порошкообразного сорбента в очищаемые дымовые газы или путём фильтрации последних через слой дроблённой извести. Эффективность вдувания сорбента не превышает 40 %. При фильтрационном способе очистки можно достичь эффективности 98 %.

Сухие адсорбционные способы сероочистки отходящих газов отличаются высокой эффективностью (до 90-95 %) и лишены самого серьезного недостатка мокрых методов – наличия иногда трудно перерабатываемых шламов. К числу минусов адсорбционных способов относят дороговизну аппаратуры и самих сорбентов, повышенные эксплуатационные затраты, что тормозит широкое распространение этой группы методов. Наиболее распространенными сорбентами для поглощения SO2являются активированные угли, коксы и полукоксы, цеолиты, силикагели и т.д. При адсорбционной очистке дымовых газов котельных установок часто совмещают процесс очистки от SO2и NOx, осуществляя его либо в одном аппарате, либо в последовательно установленных установках.

Широко распространен за рубежом (США, Япония, ФРГ) метод вдувания в топку цеолита (CaCO3, MgCO3). Способ дает снижение содержания SO2 в дымовых газах на 9-91 %.

Дата добавления: 2017-01-26 ; просмотров: 5557 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Очистка газов от соединений серы

Швейцарская производственно-инжиниринговая компания ENCE GmbH (ЭНЦЕ ГмбХ) образовалась в 1999году, имеет 16 представительств и офисов в странах СНГ, предлагает оборудование и комплектующие с производственных площадок в CША, Канады и Японии, готова разработать и поставить по Вашему индивидуальному техническому заданию различные типы очистного оборудования для очистки газов от соединений серы.

Общие положения

Соединения серы в большинстве своем являются нежелательными компонентами как в отходящих газах энергетических, металлургических и химических предприятий, так и в горючих газах. В первом случае это обуславливается в первую очередь экологическими требованиями, предъявляемыми к газовым выбросам, поскольку серосодержащие вещества способны нанести окружающей среде ощутимый вред. Стоит взять хотя бы кислотные дожди, одной из причин которых является попадание диоксида серы в атмосферу. Во втором случае речь идет скорее о сохранности оборудования, контактирующего с газом, ввиду сильного коррозионного воздействия. Кроме того, после сжигания горючего соединения серы также попадут в отходящие газы, поэтому очистка до сжигания позволяет исключить часть проблем впоследствии.

Необходимость такой очистки подтверждает тот факт, что серосодержащие соединения в том или ином виде встречается в большинстве топлив, что гарантирует наличие вредных компонентов такого рода в отходящих газах. Ужесточение экологических норм по отношению к выбросам с каждым годом делает проблему все более острой. В то же время некоторые соединений серы сами могут быть использованы в других химических процессах, к примеру, сернистый ангидрид используется для получения серной кислоты. Таким образом, очисткой газов можно добиться не только приведения их к экологическим нормам, но и получения готового сырья, что в конечном итоге позволит удешевить сам процесс очистки.

Основные формы содержания серы в газах

Сероводород (H2S) – огнеопасный бесцветный газ, плохо растворимый в воде. Является одним из наиболее нежелательных компонентов, содержащих в своем составе серу. Если рассматривать антропогенные источники, то он широко распространен в газах, образующихся в процессе нефтепереработки. В природе H2S также встречается, обычно в составе попутного нефтяного газа, в вулканических выбросах, а также в малых количествах при разложении органических веществ. Сероводород является одним из наиболее реакционноспособных соединений серы, из-за чего может вызывать сильную коррозию металлов (химическая коррозия) при контакте с ними, особенно в присутствии воды (электрохимическая коррозия), а также крайне ядовит для человека. Отрицательное воздействие оказывается на слизистые оболочки, дыхательные пути и органы зрения.

Читайте также:  Очиститель воздуха от сажи

­Диоксид серы (SO2) – бесцветный газ, растворяющийся в воде с образованием сернистой кислоты. Также широко распространенный вид серосодержащих загрязнителей, источники которого могут быть как искусственного, так и естественного происхождения. К первому случаю относят извержения вулканов, лесные пожары и различного рода естественные биологические процессы превращения серосодержащих веществ. В свою очередь к антропогенным источникам относят следующее: сжигание природных топлив (уголь и нефть), переработка руд с примесями серы, металлургические производства, химические предприятия, где в процессах присутствует сера. Выбросы искусственных источников превышают объемы естественного образования SO2 в десятки раз.

Диоксид серы достаточно реакционноспособен и время его пребывания в атмосфере не превышает 1-2 недель, что обуславливает локальный характер загрязнения, сосредоточенного вокруг источника. Это, однако, не уменьшает значимости отчистки выбросов от SO2. Сернистый ангидрид оказывает негативное воздействие на здоровье человека, в частности на дыхательные пути, особенно при повышенной влажности, а также нарушает обменные процессы внутри организма и угнетает окислительные процессы в головном мозге, мышцах и т.д. Не менее вредно и систематическое воздействие SO2, приводящее к хроническим заболеваниям органов зрения и дыхания, разрушению зубов и желудочно-кишечным расстройствам.

Но наибольшую опасность SO2 наряду с оксидами азота представляет своим участием в формировании кислотных дождей при попадании в атмосферу. Вследствие фотохимической реакции диоксид может окисляться до триоксида.

Оба эти оксида при взаимодействии с атмосферной влагой будут давать кислоты:

Причем во время грозы может образовываться озон, который в свою очередь способен доокисливать сернистую кислоту до серной:

Кислотные дожди приводят к изменению pH рек и водоемов, а также почвенной влаги, что может нанести тяжелый вред соответствующим экосистемам. Сокращается численность обитателей экосистемы вплоть до их вымирания, изменяется баланс биологически важных веществ, приводящий к нарушению процессов питания растений, что влечет за собой их болезни и гибель. Не меньше достается и искусственным объектам. Так кислотные дожди усиливаю коррозию металлических конструкций, ускоряют процессы разрушения бетонных и каменных построек, от чего особенно сильно страдают памятники архитектуры.

Классификация методов очистки

Существует множество способов удаления серосодержащих веществ из газовой среды, а выбор конкретного варианта зависит от множества параметров, таких как: начальная концентрация загрязнителя, требуемая степень очистки, физико-химический состав газовой смеси, температура, величина расхода и т.д. Однако в общем случае можно выделить три основных направления:

  • абсорбционное поглощение жидкостями;
  • адсорбционное поглощение твердыми веществами;
  • каталитические методы.

В данном случае следует говорить преимущественно о жидкостной абсорбции – процессе поглощения элементов газовой среды всем объемом жидкого сорбента. Механизм связывания молекул серосодержащего загрязнителя может быть физическим, то есть происходит растворение соединений серы в жидкости (физическая абсорбция), или химическим, когда загрязнитель вступает в химическое взаимодействие с активным компонентом абсорбента (химическая абсорбция или хемосорбция). Для повторного использования сорбента его подвергают процессу регенерации, при котором тем или иным способом из него выводится поглощенный загрязнитель.

Абсорбенты, работающие по механизму химической абсорбции, обладают сравнительно больше избирательностью, поэтому могут обеспечить более глубокую очистку газовой смеси, однако их регенерация, как правило, сопряжена с рядом трудностей, что может значительно удорожить процесс очистки. В свою очередь для регенерации физического абсорбента в большинстве случаев достаточно повышения температуры.

Для осуществления абсорбционной очистки газов используются массообменные аппараты, называемые скрубберами, к основным типам которых относят: центробежный, барботажно-пенный, насадочный, Вентури.

В отличие от абсорбционного механизма, при адсорбции поглощение загрязнителя происходит только в поверхностном слое сорбента, обычно представляющего собой твердое тело. Также различают физическую адсорбцию, при которой молекулы серосодержащих веществ удерживаются поверхностными силами, и химическую адсорбцию, когда молекулы загрязнителя вступают в химическую связь с поверхностным слоем адсорбента. Наибольшее распространение получил первый вариант, поскольку сорбенты, основывающиеся на физической адсорбции, могут обеспечить глубокую очистку газового потока и достаточно хорошо регенерируются, в то время как при химической адсорбции регенерация сорбента может создавать определенные трудности. Наибольшее распространение в качестве адсорбентов получили активированные угли и различные цеолиты искусственного происхождения. В технологическом плане адсорбционные установки имеют существенное отличие от абсорбционных, поскольку преимущественно работают в периодическом режиме с перерывами на регенерацию сорбента, в то время как в абсорбционной установке гораздо легче организовать безостановочную циркуляцию поглощающего агента между абсорбером и регенератором.

В основе каталитических методов очистки лежит химическое превращение серосодержащих компонентов газа в иную безопасную или легко отделяемую форму. Так сероводород окисляют кислородом воздуха до атомарной серы по реакции 2H2S + O2 -> H2O + 2S, что является необратимым процессом. В естественных условиях такой процесс не протекает, поэтому для его реализации используют катализаторы, обеспечивающие перенос кислорода. В качестве катализаторов в процессах очистки газовых смесей могут выступать: горячие растворы мышьяковых солей щелочных металлов, гидрат окиси железа в растворе соды и т.д. В свою очередь SO2 с помощью катализаторов окисляют до SO3, который используется в производстве серной кислоты.

Очистка газов от H2S

Для удаления из газа сероводорода используются самые разные способы, однако для работы с большим газовым потоком, движущимся с относительно большой скоростью, лучше всего себя показали абсорбционные методы. В качестве абсорбентов могут использоваться растворы солей щелочных металлов, а также моно- и диэтаноламины.

Читайте также:  Где правильно размещать увлажнитель воздуха

В качестве старого и менее эффективного, чем современные, зато крайне простого способа очистки от сероводорода можно привести Сиборд-процесс. Суть его заключается в промывке газа раствором 1-3% кальцинированной соды, регенерация которого осуществляется простой продувкой воздуха. Обратимая реакция поглощения протекает следующим образом:

Большую популярность в качестве абсорбента получили моно- и диэтаноламины ввиду большей стабильности и реакционной способности. Реакция поглощения обратима и для случая использования моноэтаноламина имеет следующий вид:

Десорбция сероводорода протекает при 105°C, после чего поглотительный раствор может быть использован вновь. Поглощение же сероводорода обычно проводят при 30-40°C, что, однако, требует охлаждения в процессе очистки дымовых газов.

Очистка газов от SO2Очистка газов от SO2

К основным методам очистки газов от SO2, которые были проверены и отработаны на практике, относят:

  • каталитические методы;
  • методы нейтрализации;
  • аммиачные методы.

Основная идея каталитических методов очистки газов от диоксида серы заключается в его превращении в серную кислоту в присутствии катализатора. Существует множество вариантов проведения такого превращения, различающихся как условиями проведения, так и, что самое важное, используемым катализатором. К наиболее распространенным методам относят пиролюзитный и озонокаталитический метод, являющийся развитием предыдущего.

В пиролюзитном методе очистки диоксид окисляется кислородом воздуха до триоксида серы в присутствии катализатора пиролюзита, основу которого составляет MnO2, при этом Mn 2+ также окисляется до Mn 3+ :

Следующим этапом идет взаимодействие образовавшегося оксида Mn 3+ с SO2, где первый восстанавливается назад до валентности 2+, а диоксид окисляется до триоксида:

С накоплением кислоты в растворе интенсивность процесса замедляется вплоть до практически полной остановки, что обусловлено снижением растворимости кислорода и сернистого ангидрида в жидкой фазе. Ниже приведен пример технологической схемы пиролюзитного метода очистки отходящих газов сернокислотного производства.

В начале очищаемый газ подается в абсорбционную колонну, где он охлаждается и происходит частичная конденсация паров серной кислоты и воды. Излишки циркулирующего раствора серной кислоты отводятся в сборник. Далее газ поступает в барботеры, где контактирует с раствором пиролюзита, который готовится отдельно в смесителе, куда поступают вода и раздробленный в мельнице пиролюзит. В барботерах происходит основная химия процесса, и образующаяся серная кислота также отводится в сборник. Поступает в сборник кислота в загрязненном виде с примесью катализатора, который требуется удалить, чтобы раствор принял вид готовой продукции. Для этого после сборника устанавливают центрифугу с промежуточными емкостями, где происходит очистка раствора серной кислоты и ее подача в цех.

Методы этой группы заключаются в нейтрализации сернистого ангидрида с образованием соответствующих солей. Существуют содовый (Na2CO3), известковый (CaO), магнезитовый (MgO) и подобные методы нейтрализации. Помимо сравнительно простой реализации и небольших капитальных затрат они имеют преимущество в отсутствии кислых сред в процессе, что не требует использования кислотостойких материалов.

В качестве примера рассмотрим содовый метод. Очищаемый газ последовательно проходит две абсорбционные насадочные колонны, орошаемые раствором соды, который готовится отдельно в специальном подготовителе. Циркуляцию поглотительного раствора обеспечивают насосы. Сам процесс поглощения сернистого ангидрида из газа происходит по следующему механизму:

В ходе очистки циркулирующий раствор поглощает диоксид серы и как следствие насыщается бисульфитом натрия. При достижении определенной концентрации часть раствора выводят из циркуляции в виде готового продукта, а недостачу восполняют добавлением такого же объема раствора соды для восстановления поглотительной способности.

Такие методы достаточно экономичны и позволяют получать диоксид серы и соли аммония в качестве продуктов, но требуют использования аммиака. В их основе лежит процесс взаимодействия диоксида серы c водным раствором сульфата аммония, то есть метод относится к абсорбционным.

Получаемый в итоге бисульфит аммония подвергают разложению, для чего может применяться один из следующих способов: кислотный, автоклавный и циклический. В зависимости от выбора способа разложения будут отличаться и получаемые продукты, так использование кислот или циклического метода позволяет получить на выходе SO2 , а автоклавным разложением получают серу и сульфат аммония.

В качестве примера возьмем установку для осуществления аммиачно-сернокислого метода очистки. Как следует из названия, для разложения бисульфита аммония применяется серная кислота:

Очищаемый газ подается в абсорбер, в данном случае распылительного типа, где происходит его контакт с раствором сульфита аммония. В нижней части аппарата происходит отделение капель жидкости с сульфитом и бисульфитом аммония, а газ выводится и направляется на доочистку вначале в каплеотбойник, и далее в электрофильтр. Конденсат из электрофильтра и отделенная жидкая фаза абсорбера поступают в сборник.

Эффективность абсорбции зависит от соотношения компонентов в поглотительном растворе. Баланс сульфита и бисульфита поддерживается путем добавления в раствор аммиака, запускающего реакцию:

Увеличение концентрации солей в поглотительном растворе может привести к выпадению их в осадок, поэтому периодически часть насыщенного раствора (с концентрацией 500-600 г/л) отводят в другой сборник. Далее насыщенный раствор поступает в колонну разложения с насадкой, подогреваемую острым паром, куда также подается серная кислота, что инициирует цепочку превращений:

Диоксид серы и сульфат аммония, который нейтрализуется раствором аммиака, представляют собой готовую продукцию и отводятся на склад.

Комплектная установка очистки отходящих газов от емкостей с серной кислотой

Основные характеристики

Эффективность очистки отходящих газов по HCl: 99,58%

— Максимальная расчетная производительность: 2500 Нм3/ч

— Номинальная производительность: 1500 Нм3/ч

Источник