Меню

Как соединить вентиляторы последовательно или параллельно



Как соединить вентиляторы последовательно или параллельно

Группа: Участники форума
Сообщений: 49
Регистрация: 9.8.2015
Из: Екатеринбург
Пользователь №: 275046

Привет всем, мучают меня два вопроса. Товарищи специалисты подскажите пож-та,

1) Можно ли монтировать 2 приточных вентилятора друг за другом. сразу? Есть ли в этом какой-нибудь смысл?
2) Можно ли обороты этих вентиляторов держать разными? т.е у первого меньше а у второго больше.

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 19396
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

Группа: Участники форума
Сообщений: 49
Регистрация: 9.8.2015
Из: Екатеринбург
Пользователь №: 275046

Группа: Участники форума
Сообщений: 294
Регистрация: 25.1.2009
Из: Омск
Пользователь №: 28132

Группа: Участники форума
Сообщений: 49
Регистрация: 9.8.2015
Из: Екатеринбург
Пользователь №: 275046

Вот что нашел про соединение 2х вентиляторов

Ряд производителей, с целью повышения давления, предлагают установки, состоящие из двух последовательно установленных канальных вентиляторов. При последовательной работе двух вентиляторов они имеют одинаковую производительность.
Неудачный подбора «дополнительного» вентилятора, максимальная производительность которого меньше производительности «основного» вентилятора при его одиночной работе. «Дополнительный» вентилятор в этом случае работает в «турбинном» («флюгерном») режиме и является аэродинамическим сопротивлением для основного вентилятора. Это приводит к тому, что производительность основного вентилятора при установке дополнительного уменьшается. Но при этом необходимо помнить, что кроме уменьшения производительности «основного» вентилятора, «дополнительный» вентилятор потребляет соответствующую мощность! Это типичная ситуация неправильного подбора дополнительного вентилятора, служащего для увеличения производительности в вентсистеме.
Рассмотрим последовательную работу вентиляторов с разной производительностью (основной вентилятор и вентиляторы доводчики).
Если производительность «основного» вентилятора при работе в данной сети меньше максимальной производительности «дополнительного» вентилятора, то установка «дополнительного» вентилятора приводит к увеличению производительности.
В заключение анализа последовательной работы вентиляторов необходимо обратить внимание на одно важное обстоятельство: какого бы типа ни были вентиляторы, второй вентилятор не рекомендуется ставить непосредственно за первым, поскольку на выходе вентилятора поток всегда имеет пространственную неоднородность на любых режимах работы неоднородность и нестационарность на любых режимах работы. Например, поток на выходе из канального вентилятора с круглым корпусом или осевого
вентилятора без спрямляющего аппарата всегда имеет некоторую остаточную
закрутку; течение на выходе канального вентилятора с прямоугольным корпусом всегда имеет пространственную неравномерность, поскольку потоком занято не все выходное сечение и т.д. Для исключения влияния предыдущего на последующий вентилятор необходимо, чтобы перед ним был отрезок прямого воздуховода длиной в несколько гидравлических диаметров для сглаживания пространственной и временной неоднородности потока.

Забавно получается, сам спросил сам ответил =)
Хотел просто узнать мнение тех кто сталкивался с данной задачей.

А у меня собственно следующая схема работы последовательно смонтированых приточных вентиляторов.
Приточка с электро нагревателем.

1 первый, основной всасывающий (5.5 kw, прямоугольный канальный, 800/400)
2 второй, дополнительный помогающий (3.0 kw прямоугольный канальный, 800/400)

Ничерта не работают =)
Там магистраль от силы метров 30.
В начале еще что-то выдувает, а в конце нету ничего.
Соответственно управляющие ресторана постоянно задают вопросы почему так душно?
Вытяжка у них работает отлично, а вот с притоком беда. Потому что, под потолком нету места для нормального расположения вентиляции. Вот и забубенили последовательно приточные вентиляторы. И помещения для вент камеры нету.

Источник

Последовательное подключение вентиляторов.

Всем привет. Гуру вентиляции так сказать) Вопрос скорее всего уже давно обмусолили вдоль и поперек. Если взять трубу например диаметр 110, длина 6 метров. Установить 3 одинаковых вентилятора через каждые 2 метра. Понятно что впритык их ставить смысла нет. Друг другу мешать будут, либо на одну ось вешать. Расстояние должно быть между вентилями несколько гидравлических диаметров, у 110 это примерно 0,5 метра. Вопрос: будет ли разница в давление и увеличении CFM между 3 штуками через каждые 2 метра (схема: вход сразу вент.№1 -> 2 метра -> вент.№2 -> 2 метра -> вент.№3 -> 2 метра -> выход) и просто одним вентилятором в 6 метровой трубе (вход -> 2 метра -> 2 метра -> вент.№1 -> 2 метра -> выход). Хотя читал что если два вентилятора впритык на одном валу, то повышается статическое давление, но CFM остается. Я правильно понимаю что один вент в 6 метровой трубе испытывает гидравлическое сопротивление? То есть массу воздуха забирать и толкать тяжелее, в итоге у него проседает паспортный CFM. Получается что 3 штуки уменьшат потерю на сопротивлении, должна повыситься прокачка воздуха. Однако паспортный CFM не повысится?

Читайте также:  Лампочка для вытяжки цоколь е14

Ээээ Я извиняюсь,
А Вы в познавательных целях интересуетесь, или в практических?

В обоих. Сейчас один вент крутится, купил еще 2. В коробках пока лежат, завтра ставить буду.

Нам без «трудностей» никак и прямой дорогой не ходим.

Это точность в наличие компьютерные вентиляторы и их надо приспособить.

Последовательно вентиляторы — увеличивается напор. Больше двух ставить непрактично. Непонятно что на выходе получается. А два последовательно работают нормально при условии соблюдения правильности их размещения.

Когда-то тоже дурью такой занимался. Один вентилятор и в Африке вентилятор.

Это мое мнение и его не навязываю

Компьютерные вентили. Они дешевле получаются, а по паспорту CFM тот же, если взять на 220 в. Канальные ставить ну совсем дорого выходит и электроэнергию выкачивают нормально. Увеличивает напор до паспортных данных, из-за меньших потерь? Выше паспортных данных не прыгнешь? Есть как бы статическое давление, динамическое и объем. Объем понятно = параллельно. Тут получается динамическое вырастит? Что на что влияет не совсем понимаю. Что это на практике дает. На выходе атмосфера, труба горизонтального расположения. В принципе одного хватает, но хочется еще лучше)

Ну если в практических:
Не зная характеристик системы и рабочих диаграмм вентиляторов подсказать особо нечего.
Возможно как увеличение расхода, так и его снижение. За счёт того, что каждый последующий вентилятор будет являться серьезным местным гидравлическим сопротивлением, превышающим сопротивление воздуховода. Учитывая диаметры и метры морочиться с расчётами смысла нет. Пробуйте. На расстоянии не мене 5 гидравлических диаметров ( для круглых воздуховодов совпадает с фактическим). Есть чем скорость потока мерять?

Я и написал что по теории у меня где то нужно 0,5 метра интервал. А будет 2 метра. Да конечно расчеты мне не нужны) Просто что на что влияет примерно. Насколько я понимаю вот эту картинку (С верхними все понятно, тут чисто объем в единицу времени. Не какой дополнительной скорости или давления), давление растет после спаренных вентилей, как турбина. Однако даже если поднимается крутящий момент в виде лишнего давления, CFM остается тот же. Это дает возможность на большие расстояние его ставить, то есть больше сопротивление воздуха осилит, больше массы (воздух = такая же частица и имеет вес, инерцию) протолкнет так сказать. У меня же получается выше CFM не получится поднять, с интервалами вентили лишь уберут по сути потери. То есть кривая пошла вниз пропорционально расстоянию (затухание, трата кинетики на продавливания массы воздуха бла бла бла), и тут подхватывает второй и т.д. Из этого всего получаем ровную полку момента до выхода. В моем исполнение выходит нужно рассчитать именно спад (затухание) на расстояние. Подобрать длину так, чтобы не мешали друг другу (чтобы первый был как бы слабее второго) и в тоже время ровную кривую (полку) удержать. Думаю 2 метра мало, по этому соглашусь с ответом что больше двух бред, во всяком случаи на 6 метров. Нужно просто один на вход, другой на выход. Ну ладно посмотрю что получится) Замерить скорость нечем( Я же не специалист)

Как должен один работать, в идеале с минимальными потерями (без потерь это вообще невозможно) примерно так:

Работает по факту один на 6 метров примерно так:

Вот что у меня получится в идеале, теоретически:

Вывод: КПД, CFM близкий к паспорту на эти 6 метров. Не более. Конечно это теория)

Источник

Последовательное соединение вентиляторов

В ряде случаев в сети с большим сопротивлением вместо замены вентиля­тора на больший типоразмер целесообразно установить дополнительный вентилятор. При этом вентиляторы работают последовательно на единую сеть. Обычно последовательно включают в работу осевые вентиляторы, име­ющие относительно небольшие давления.

Это многоступенчатый вентилятор с одинаковыми рабочими колесами, между которыми установлены спрямля­ющие аппараты для раскручивания потока до осевого направления перед по­следующим колесом. Известны случаи последовательной работы канальных вентиляторов. Исключительно редко используют последовательную ра­боту радиальных вентиляторов со спиральным корпусом из-за сложности компоновки.

При последовательной работе двух вентиляторов они имеют одинаковую производительность. Чтобы получить суммарную характеристику системы из двух вентиляторов, необходимо сложить их давления (ординаты) при фик­сированной производительности.

Читайте также:  Клапан вентиляции салона пассат б5

Для упрощения анализа совместной работы вентиляторов в дальнейшем не учитываем увеличение сопротивления сети при установке второго вентилятора. Аэродинамическая характеристика сум­марной работы двух одинаковых вентиляторов приведена на рисунке.

Последовательная работа двух одинаковых вентиляторов:

1, 2 – характеристики дополнительного и основного вентиляторов

3 – характеристика совместной работы двух вентиляторов

Оба вентилятора имеют производительность LP , рабочим режимом каждого из вен­тиляторов является точка А, а системы из двух вентиляторов — точка В, давле­ние в которой равно сумме давлений двух вентиляторов.

Рассмотрим совместную работу двух вентиляторов, которые имеют различ­ные аэродинамические характеристики (рис. а). Вентилятор 2 является основным, а вентилятор 1 — дополни­тельным, служащим для увеличения производительности основного венти­лятора. Режимом совместной работы вентиляторов является точка С, рабо­чим режимом основного вентилято­ра — точка В, а дополнительного — точ­ка А, при этом каждый из вентиляторов имеет производительность LP . Если бы основной вентилятор работал один, то его рабочим режимом была бы точ­ка D , а производительность вентилятора — LD . За счет установки дополнительного вентилятора производительность возросла на величину Lp — LD . Как видно, если производительность основного вентилятора при работе в данной сети LD меньше максимальной производительности дополнительного вентилятора L 1 MAX , то установка дополнительного вентилятора приводит к увеличению произ­водительности.

Последовательная работа двух вентиляторов с различными характеристиками:

1, 2 – характеристики дополнительного и основного вентиляторов

3 – характеристики совместной работы двух вентиляторов

Рассмотрим случай неудачного выбора дополнительного вентилятора , мак­симальная производительность которого L 1 MAX меньше производительности основного вентилятора LD при его одиночной работе (рис. 6). Режимом со­вместной работы вентиляторов является точка С. Рабочим режимом основного вентилятора является точка В, а дополнительного — точка А, каждый из венти­ляторов имеет производительность LP . Если бы основной вентилятор работал один, то его рабочим режимом была бы точка D , а производительность венти­лятора — LD . Дополнительный вентилятор в этом случае работает в «турбин­ном» («флюгерном») режиме и является аэродинамическим сопротивлением для основного вентилятора. Это приводит к тому, что производительность основного вентилятора при установке дополнительного уменьшилась на вели­чину LD — LP . Но при этом необходимо помнить, что, кроме уменьшения произ­водительности основного вентилятора, дополнительный вентилятор потребля­ет соответствующую мощность.

Источник

Параллельное соединение вентиляторов

Параллельную установку вентиляторов используют в случаях, когда необходимо увеличить производительность в сети или иметь разную производительность (в зависимости от сезона работы), а также для эффективного регулирования производительности в ветвях вентиляционной системы и т. д. Схема параллельной работы двух и более вентиляторов рекомендуется для увеличения подачи воздуха.

Схемы совместной работы вентиляторов

1 — параллельное соединение вентиляторов

2 — последовательное соединение вентиляторов

3 — одновременно параллельное и последовательное соединение вентиляторов

Чтобы получить суммарную характеристику системы из двух вентиляторов, необходимо сложить их производительности (ординаты) при фиксированном давлении. При анализе параллельной работы вентиляторов, как и в первом случае, не учитываем увеличение сопротивления сети при установке дополнительного вентилятора.

Аэродинамическая характеристика двух одинаковых параллельно работающих вентиляторов

1, 2 – характеристики дополнительного и основного вентиляторов

3 – суммарная характеристика

Рабочим режимом каждого из вентиляторов является точка А, а системы из двух вентиляторов — точка В. Вентиляторы имеют равные производительности L 1 и L 2 , а суммарная производительность системы равна их удвоенной производительности L 1+2 .

Рассмотрим совместную работу двух различных вентиляторов (см. рисунок), один из которых является основным вентилятором, а другой — дополнительным вентилятором, установленным, например, для увеличения производительности основного.

Параллельная работа двух различных вентиляторов:

1 – дополнительный вентилятор

2 – основной вентилятор

3 – суммарная характеристика

Для построения суммарной аэродинамической характеристики необходимо иметь характеристику дополнительного вентилятора в четвертом квадранте (режим обратного течения через вентилятор). Теоретическая кривая совместной работы, полученная сложением производительностей двух вентиляторов, имеет особый начальный участок E — F , на котором максимальное давление дополнительного вентилятора меньше, чем у основного (здесь точка F на характеристике совместной работы соответствует давлению на режиме заглушки дополнительного вентилятора). Существуют два режима совместной параллельной работы вентиляторов, которые определяются сопротивлением сети.

Рассмотрим случай, когда сопротивление сети не превышает максимальное давление дополнительного вентилятора р V 1 MAX (рис. а). Режимом совместной работы вентиляторов является точка С, рабочим режимом основного вентилятора — точка В, а дополнительного вентилятора — точка А. Если бы основной вентилятор работал один, то его режимом была бы точка D , а производительность — LD . За счет установки дополнительного вентилятора производительность при совместной работе была увеличена на L 1+2 — LD . Такой режим характеризуется устойчивой параллельной работой двух вентиляторов.

Читайте также:  Вытяжка из технического этажа

Рассмотрим случай неудачного выбора дополнительного вентилятора, при котором сопротивление сети превышает его максимальное давление р V 1 MAX (рис. 6). Теоретически режимом совместной работы двух вентиляторов является точка С, совместная производительность двух вентиляторов — L 1+2 . Рабочим режимом основного вентилятора является точка В, а рабочим режимом дополнительного — точка А, причем через дополнительный вентилятор в режиме противодавления идет отрицательный расход — L 1 , снижающий общую производительность системы из двух вентиляторов. Суммарная производительность системы L 1+2 меньше производительности одиночно работающего основного вентилятора LD . В действительности же и основной, и дополнительный вентиляторы работают в нестационарном режиме. Через дополнительный вентилятор имеют место нестационарные во времени (периодические) прорывы воздуха, сопротивление сети периодически изменяется, что приводит также к неустойчивой работе основного вентилятора (особенно если он работает в области срывных режимов). При этом дополнительный вентилятор потребляет определенную мощность. Необходимо любым способом избегать таких режимов параллельной работы вентиляторов, поскольку увеличенная нагрузка и ее периодические изменения могут привести к сгоранию электродвигателя дополнительного вентилятора. В крайнем случае вход или выход дополнительного вентилятора следует перекрывать клапаном.

Выше были рассмотрены случаи параллельной работы вентиляторов, имеющих монотонно падающие кривые давления р = f ( L ) . Это характерно, например, для радиальных вентиляторов с загнутыми назад лопатками или для ряда слабонагруженных осевых вентиляторов. Для таких вентиляторов характерны несильно выраженные зоны неустойчивой работы в области малых производительностей и не очень интенсивные колебания аэродинамических параметров в этих областях. Все существенно усложняется, если вентиляторы имеют так называемые «седлообразные» кривые давления (кривые с точкой перегиба и с максимумом) или кривые давления с разрывом. Например, радиальные вентиляторы с барабанными колесами (с вперед загнутыми лопатками) имеют провал характеристики в зоне малых производительностей, некоторые схемы высоконагруженных осевых вентиляторов имеют разрыв характеристик с сильно развитой неустойчивостью течения. Не будем утруждать читателя построением совместной характеристики, скажем только, что если сеть пересекает совместную характеристику вентиляторов вблизи максимума давления, то при одном и том же давлении вентиляторы могут иметь несколько производительностей (многозначность режимов). В этом случае режим работы каждого вентилятора зависит от первоочередности их включения, вентиляторы работают неустойчиво, однако помпажные режимы полностью отсутствуют. Помпаж вентилятора — это неустойчивая работа вентилятора, которая характеризуется резким колебанием напора и расхода перегоняемого воздуха.

При параллельной работе двух вентиляторов имеет значение, как объединены их входы и выходы и как используется скоростной напор в каналах перед и после вентиляторов. От этого может зависеть уровень неустойчивости выбранного режима. Например, если перед вентиляторами установлен тройник с ответвлениями под прямыми углами (рис. а), то в таком тройнике кроме потери скоростного напора, наблюдается интенсивное вихреобразование, которое может повлиять на работу вентиляторов и понизить порог устойчивой работы при параллельном соединении. В этом смысле тройник (рис. 6) предпочтительнее. То же самое можно сказать и об объединяющем тройнике на выходе из вентиляторов.

Тройник на входе / выходе параллельного соединения вентиляторов:

а – ответвления под прямым углом

б – ответвления под острым углом

Примером неудачной параллельной работы с объединенным входом является, например, работа нескольких приточных установок различной производительности с общей зажатой шахтой, а неудачной работы с объединенным выходом — работа оконного вентилятора на нагнетание в помещении с организованным притоком, но с несбалансированной вытяжкой и т.д.

Интересно отметить, что радиальный вентилятор двустороннего всасывания является также примером параллельной работы двух одинаковых вентиляторов с объединенными входом и выходом. При этом важно учитывать следующее.

1. Теоретически производительность вентилятора равна удвоенной производительности каждого входа. В действительности у вентиляторов двустороннего всасывания, как правило, используется шкиво-ременная передача, которая загромождает один из входов. Таким образом, в ряде случаев вентилятор с двухсторонним входом необходимо рассматривать как два параллельно работающих вентилятора с разными характеристиками.

2. Если вентилятор имеет так называемую «седлообразную» кривую давления (кривые с точкой перегиба и с максимумом) или кривую давления с разрывом, то возможны режимы многозначной работы вентилятора. Как правило, это осевые сильно-нагруженные вентиляторы и радиальные вентиляторы с углами выхода ??2 ? 90°.

Источник