Меню

Как узнать cfm вентилятора



Ликбез по системам охлаждения. Занятие третье: комплексный подход к охлаждению компьютерных систем

Проблема эффективного охлаждения высокопроизводительных компьютерных систем давно уже стала притчей во языцех и добавила забот не только специалистам или любителям-энтузиастам, но и самым что ни наесть «рядовым» пользователям. Сложную ситуацию значительно усугубляет еще и тот факт, что многие сборщики средней руки или даже крупные производители системных блоков зачастую совершенно «забывают» (вероятно, в угоду повышению нормы прибыли) о необходимости комплексного и достойного охлаждения всей компьютерной системы в целом: большая часть выпускаемых компьютеров комплектуется в откровенно тесных и «жарких» корпусах, лишенных на деле сколько-нибудь эффективных средств внутренней вентиляции. Для маломощных «бюджетных» систем это не так уж и критично, но вот возможность гарантированно правильного и надежного функционирования высокопроизводительной компьютерной «начинки» в подобных условиях вызывают очень большие сомнения.

На нашем прошлом занятии мы подробно разобрали основные нюансы функционирования вентиляторов, рассмотрели их важнейшие технические параметры. Сегодня мы вновь обратимся к этим устройствам, научимся практическому применению характеристических кривых (расходных характеристик) вентиляторов и посмотрим, как объективно оценить эффективность средств охлаждения компьютерных корпусов.

Исходные предпосылки

По большому счету, в обязанности компьютерного корпуса входит не только обеспечение удобной компоновки внутренних устройств совместно с удовлетворением эстетических потребностей пользователей, но и эффективный отвод тепловой мощности, выделяемой этими самыми внутренними устройствами, а также корпусным БП. Практически каждый компонент компьютерной системы весьма «капризен» в тепловом отношении и требует вполне определенных климатических условий. Наиболее жесткие требования предъявляют современные процессоры от Intel и AMD: для их комфортного функционирования внутрикорпусная температура (точнее, температура воздуха на «входе» вентилятора процессорного кулера) не должна превышать 35-40°C. Другие составляющие системы (материнская плата, видеокарта, жесткие диски, приводы DVD-ROM/CD-RW и т.д.) менее придирчивы, но, тем не менее, все они находятся вместе с процессором «в одном трюме», поэтому с удовольствием поддерживают «капризы» последнего.

Задача поддержания оптимальной внутрикорпусной температуры в последние годы все больше и больше затрудняется: общая тепловая «емкость» компьютеров неуклонно растет (тепловыделение навороченных систем на базе Athlon XP или Pentium 4 может достигать сейчас 250-300 Вт), а серьезных подвижек в плане тепловой оптимизации типических конфигураций корпусов форм-фактора ATX практически не наблюдается. Некоторые продвинутые пользователи берут инициативу в свои руки, ступая на тернистый путь доработки и оптимизации систем охлаждения корпусов методом проб и ошибок, который, как водится, далеко не всегда дает желаемый результат. Между тем, существует гораздо более простая и надежная методика, позволяющая объективно оценить эффективность той или иной корпусной системы охлаждения, и при необходимости — доработать (доукомплектовать) эту систему оптимальным образом или же окончательно укрепиться в решении приобрести новый, более качественный корпус.

Отправным пунктом этой методики является простое полуэмпирическое соотношение

P — полная тепловая мощность компьютерной системы,
Ti — температура внутри системного корпуса,
Тo — температура «на входе» корпуса (температура в помещении),
Q — производительность (расход) корпусной системы охлаждения.

Данное соотношение однозначно показывает, какой производительностью должна обладать корпусная система охлаждения для отвода требуемой тепловой мощности при заданной разности температур внутри и вне корпуса. Следует отметить, что здесь учитывается только конвективный теплообмен (т.е. перенос тепла воздушным потоком). Другие виды теплообмена — теплообмен теплопроводностью (передача тепла через непосредственный контакт внутренних устройств и стенок корпуса) и лучистый теплообмен (перенос тепла излучением) во внимание не принимаются. Однако вклад этих двух механизмов теплообмена весьма мал (не превышает 2-5% общего тепловыделения), поэтому под P мы смело можем подразумевать именно полную тепловую мощность системы.

Что ж, давайте возьмем «среднестатистическую» конфигурацию высокопроизводительного компьютера, распишем значения тепловой мощности, выделяемой его компонентами, и сведем их в Таблицу 1.

Наименование компонента Тепловая мощность, Вт
Процессор AMD Athlon XP 2000+ (Intel Pentium 4 2 GHz) 65
Материнская плата на базе VIA KT333 (Intel i845E) 25
Модуль памяти DDR DRAM, 512 Мб 10
Видеокарта Nvidia GeForce 4 20
Жесткие диски IDE 40-60 Гб, 7200 об/мин, 2 шт. 15
Привод DVD-ROM 5
Привод CD-RW 5
Мультимедийная карта/звуковая карта 5.1 channel 5
Суммарная мощность компонентов 150
Тепловая мощность стандартного БП с пассивной схемой PFC (КПД 0,75) 50
Общий итог 200

Итак, задаем температуру на «входе» корпуса равной 25°C, желаемую внутрикорпусную температуру равной 35°, и, сделав несложный расчет, получаем искомое значение производительности корпусной системы охлаждения, приблизительно равное 35 CFM. Если мы будем комплектовать нашу систему в стандартном «безвентиляторном» корпусе, то максимум, на что можем рассчитывать, это 25-30 CFM номинальной производительности внутреннего вентилятора БП, что уже, вообще говоря, недостаточно для обеспечения комфортного климата компьютерным компонентам. Между тем, как выяснилось на прошлом занятии, реальная производительность вентилятора в конкретных эксплуатационных условиях будет ощутимо ниже номинальной. В конечном итоге мы можем столкнуться с невозможностью поддержания в таком корпусе не то что комфортной, но даже термально безопасной температуры внутренней среды.

Системный импеданс

Для количественного описания резистивного действия, которое оказывает воздушному потоку компьютерная система и ее компоненты, служит так называемый системный импеданс. В аналитическом виде эта аэродинамическая характеристика выражается соотношением

K — системная константа,
Q — производительность вентилятора,
n — турбулентный фактор (1 1 0,07 ССЗ 2 0,08 ВСЗ 3 0,11 Общий объем корпуса 45 л, стандартный БП МСЗ 0,05 ССЗ 0,06 ВСЗ 0,08 Общий объем корпуса 50 л, стандартный БП МСЗ 0,04 ССЗ 0,05 ВСЗ 0,07 Общий объем корпуса более 55 л, стандартный БП МСЗ 0,04 ССЗ 0,04 ВСЗ 0,05

1 МСЗ — малая степень заполнения корпуса (заняты слот AGP, 1 слот PCI, 1 отсек для устройств 5.25», 2 отсека для устройств 3.5»).
2 ССЗ — средняя степень заполнения корпуса (заняты слот AGP, 2-3 слота PCI или других шин, 2-3 отсека для устройств 5.25», 2 отсека для устройств 3.5»).
3 ВСЗ — высокая степень заполнения корпуса (заняты слот AGP, не менее 4-5 слотов PCI или других шин, 3-4 отсека для устройств 5.25», все доступные отсеки для устройств 3.5»).

Что ж, на основании данных таблицы 2 не составит большого труда построить кривую системного импеданса типических корпусов. Для этого нужно просто выбрать «опорный» корпус, наиболее близкий к вашему по объему и внутренней конфигурации, и подставить соответствующее значение константы k в соотношение (3). Значение этой константы можно варьировать в пределах ±5%, если литраж вашего корпуса немного больше или немного меньше опорных показателей.

Осталось разобраться с характеристическими кривыми вентиляторов. К сожалению, далеко не всегда удается раздобыть расходную характеристику для какой-то конкретной модели вентилятора (в отношении разного рода «безымянных» вентиляторов это будет совершенно безнадежным делом). Между тем, выход из положения все-таки есть, и он довольно прост! На практике для довольно широкого класса вентиляторов типоразмера 80х80х25 мм со скоростью вращения крыльчатки 1500-3000 об/мин реальную зависимость статического давления потока от его объемной скорости (суть искомую расходную характеристику) можно аппроксимировать незатейливым полуэмпирическим соотношением

Pmax — максимальное (номинальное) статическое давление вентилятора,
Q — расход (производительность) вентилятора,
m — размерный множитель, m = 0,12 (mmH2O/CFM),
P — статическое давление.

Чтобы построить эту прямую, достаточно знать только номинальную производительность вентилятора (Qmax). Одна краевая точка искомой прямой становится известной автоматически — это, как вы правильно догадываетесь, точка (0, Qmax). Ну а процедура определения другой краевой точки, (Pmax, 0), полагаю, особых объяснений не требует.

Читайте также:  Лабораторная работа по вентиляторам

Когда в корпусе установлен один дополнительный «заднеприводной» вентилятор, расходную характеристику охлаждающего комплекса (вентилятор плюс корпусной вентилятор) можно представить соотношением

P1f = Prf, max — m1f*(Qps + 0,45*Qrf), где (5)

Prf, max — максимальное статическое давление «заднеприводного» вентилятора,
m1f — размерный множитель,
Qps — расход вентилятора БП,
Qrf — расход «заднеприводного» вентилятора,
P1f — статическое давление охлаждающего комплекса.

Результирующая прямая, задаваемая соотношением (5), строится также элементарно, как и в случае соотношения (4): для этого достаточно отметить краевые точки (Pmax, rf, 0) и (0, Q1f,max = Qps, max + 0,45*Qrf, max).

Наконец, если в корпусе, дополнительно к «заднеприводному», установлен еще и один «переднеприводной» вентилятор, расходную характеристику такой системы охлаждения можно представить соотношением

P2f = Prf, max + 0,10*Pff, max — m2f*(Qps + 0,45*Qrf + 0,16*Qff), где (6)

Prf, max — максимальное статическое давление «заднеприводного» вентилятора,
Pff, max — максимальное статическое давление «переднеприводного» вентилятора,
m2f — размерный множитель,
Qps — расход вентилятора БП,
Qrf — расход «заднеприводного» вентилятора,
Qff — расход «переднеприводного» вентилятора,
P2f — статическое давление охлаждающего комплекса.

Краевые точки прямой, задаваемой соотношением (6), определяются по такому же несложному принципу, как и в случае соотношения (5).

Итак, препятствий на пути к заветной цели больше нет. Теперь, построив прямые системного импеданса и расходной характеристики корпусного охлаждающего комплекса, по точке их пересечения (найдя ее графическим способом или просто решив систему уравнений) мы сможем определить реальную производительность этого комплекса и соотнести ее с нашими требованиями к комфортной внутрикорпусной температуре. А дальше, как говорится, дело техники!

Что ж, на сегодня, пожалуй, уже хватит. На нашем следующем занятии мы обратимся к термопастам (а также прочим теплопроводным интерфейсным материалам), разберемся с их физико-химическими свойствами и эксплуатационными качествами. Спасибо за внимание и до встречи!

Источник

Что такое CFM: как рассчитывается воздушный поток и в чем измеряется?

Здравствуйте, дорогие читатели! Воздушный поток CFM — это важная характеристика кулера, которая отражает его эффективность. В этом посте давайте рассмотрим, что это такое, в чем измеряется, какой он должен быть у хороших вентиляторов и как рассчитать рекомендуемый коэффициент.

Что такое CFM

CFM — не метрическая единица измерения объема, кубический фут в минуту. Используется эта единица потому, что футы повсеместно применяются в США, а именно эта страна остается передовым разработчиком компьютерных технологий.

В кубических метрах, как правило, в характеристиках кулера этот параметр указывается редко. Впрочем, несложно сделать расчет в более привычных для европейца единицах: 1 куб. м = 35, 31 CFM.

Характеристика зависит от трех параметров кулера:

  • Формы лопастей;
  • Скорости их вращения;
  • Диаметра вентилятора.

Например, при равной скорости больший воздушный поток создаст вентилятор, диаметр которого больше. Соответственно, при одинаковом диаметре эффективнее кулер, лопасти которого вращаются быстрее.

Что значит это в практическом плане? Зная рекомендуемый CFM для компьютерного корпуса, несложно рассчитать вид вентиляторов и количество, которые надо использовать для максимального охлаждения.

Какое охлаждение нужно в зависимости от типа корпуса

В зависимости от типоразмера шасси следует выбрать суммарно создаваемый пропеллерами воздушный поток:

  • Mini Tower — 30–35;
  • Middle Tower — 45–55;
  • Big Tower — 70–110.

В ноутбуках из-за компактных размеров, даже 20 CFM оказывается достаточно. Конечно, это не означает, что если «переборщить» с количеством кулеров, это негативно повлияет на работу компьютера.

Просто большее количество пропеллеров будет создавать лишний шум. Рекомендую отдать предпочтение одной мощной модели, создающей достаточный воздушный поток, перед несколькими небольшими, но шумными. С топом кулеров для процессора вы можете ознакомиться здесь.

Замечено, что вентиляторы разного диаметра при работе создают приблизительно одинаковый уровень шума. Исключения — устройства с пониженной шумностью. Работают они тихо, но при этом нагнетают тот же по объему поток воздуха.

Также учитывайте, что чем больше вентиляторов установлено на всасывание воздуха, тем больше пыли будет поглощать компьютер. А значит, что и чистить его придется чаще, если вы хотите нормальной работоспособности девайса.

И не забывайте, что даже самые мощные крыльчатки будут неэффективны для охлаждения ПК, если разместить их неправильно. При грамотной компоновке, количество подаваемого воздуха соответствует количеству выдуваемого, а поток, огибая компоненты компьютера, не встречает на пути значимых препятствий.

Для вас будут полезны публикации «Как часто надо менять термопасту на процессоре» и «Термопрокладка или термопаста — что лучше для процессора». Буду признателен, если вы поделитесь этим постом в одной из социальных сетей. До скорой встречи!

Источник

Что такое CFM? Какие значения CFM считаются большими /хорошими?

Custom Tags как их юзать на CFM ?
в ASP’е есть такие процедуры и функциии sub sub_name end sub function function_name end.

The requested URL /’ onclick=’return cfm(this); was not found on this server
Кто подскажет почему сервак выдает вот такую ошибку . Хост висит на Виртуальном хостом Not Found.

Какие схемы считаются контактными?
Если в схеме нет контакта проводников с обмотками реле, то такая схема называется контактной. Но.

Переписать в файл g те значения, что являются большими среднего геометрического
Из файла f , где находятся целые числа переписать в файл g те , что являются большими среднего.

CFM (cubic feet per minute) — характеризует, сколько кубических футов воздуха перекачивает вентилятор в минуту

Считается, что чем больше этот показатель — тем вентилятор производительнее, но одновременно с этим нужно обращать на соответствующий уровень шума, который этот вентилятор будет издавать. Можно взять, к примеру, вентилятор поменьше и пооборотистее, но от шума которого уши повянут, а можно побольше, помощнее, и, как следствие, потише для аналогичных показателей CFM.

Добавлено через 3 минуты
А вообще — охлаждающую установку выбирают по рассеиваемой мощности.

Источник

Все, что необходимо знать о компьютерных вентиляторах

В этой статье я хочу обсудить с вами такую тему, как вентилятор для компьютера. Хотя сегодня жидкостные системы охлаждения и набирают популярность, но для массового рынка они не годятся. А актуальность качественного охлаждения компьютерных комплектующих с ростом их мощности только растет. Воздушное охлаждение компьютерных систем остается и будет оставаться самым надежным и практичным способом.

Кому интересно, могут почитать статью про виды охлаждения ПК, но а мы перейдем к разбору необходимых эксплуатационных характеристик и небольших лайфхаков, которые пригодяться простому пользователю при выборе, покупке и самостоятельной установке компьютерных вентиляторов.

Габариты

Крепление вентиляторов внутри корпуса рассчитано на определенные размеры вертушки – 60, 80, 90/92, 120, 140 и 200 мм. Наиболее ходовым считается размер 120 мм, в некоторых местах так же предусматривается установка 90/92 и/или 140-мм вертушек. Чаще вентиляторы размером 140 и 200-мм крепятся в корпусах нестандартной формы или дизайна. А вот места под установку 60, 80 и 90/92-мм вентиляторов обычно встречаются в старых корпусах образца середины 2000х. Выбирать следует из вариантов, что подходят под место крепления. Причем установка вентиляторов с меньшим размером обычно не вызывает трудностей, а вот варианты крупнее не помещаются физически.

Предпочтительнее рассматривать наиболее крупные диаметры вентиляторов. К примеру, если корпус позволяет установить вертушку на 120 и 140 мм, лучше использовать вариант на 140 мм. Поскольку чем больше диаметр, тем меньше требуется оборотов для создания воздушного потока. Так же меньше акустического шума и выше производительность.

Читайте также:  Питание вентиляторов через sata

Так же толщина большинства вентиляторов 25 мм, 10 и 15 мм обычно у вертушек в 70 мм или меньше. Встречаются так же и 120-мм вентиляторы с шириной 20 и 15 мм: Deepcool GS120, Noctua NF-A12x15 PWM и NF-A12x15 FLX. Такие варианты уместно приобретать для корпусов с ограниченным пространством.

Как узнать размер кулера для корпуса

Если вы знаете как называется модель вашего корпуса, то вы можете узнать размер кулеров на сайте производителя. Для примера возьмем такой популярный корпус как FRACTAL DESIGN Core 2500.

Если ввести его название в любую поисковую систему, то можно без труда найти официальный сайт производителя.

А уже на сайте производителя можно найти детальную информацию обо всех посадочных местах для корпусных кулеров, а также их размер и расположение.

Но, к сожалению, в большинстве случае данный способ не работает. Чаще всего, корпус был куплен давно и информации о нем в интернете нет либо определить производителя и модель корпуса невозможно. В таких ситуациях нужно самостоятельно измерить посадочное место под кулер и определить подходящую модель. Измерять посадочное место проще всего между центрами крепежных отверстий.

Ниже приводим расстояния между центрами крепежных отверстий для корпусных кулеров популярных размеров.

Расстояние между крепежными отверстиями Размер кулера
32 мм 40×40 мм
50 мм 60×60 мм
71.5 мм 80×80 мм
82.5 мм 92×92 мм
105 мм 120×120 мм
125 мм 140×140 мм
154 мм 170 мм 200×200 мм
Информация о размерах кулеров взята с сайтов noctua.at и arctic.ac.

Используя данную таблицу можно без труда определить размер кулера, который нужен для вашего корпуса.


Подключение

Для питания вентиляторов используются четыре варианта подключения:


Подключение вентиляторов. Слева налево: 3 pin, 4pin и Molex.

В подключении 2 pin используются 2 провода «+» и «-». Обычно такой разъем используется для питания вентиляторов внутри блоков питания. Поэтому в продаже вертушки с таким типом подключения встретить тяжело.

Вариант на 3 pin более распространен. Помимо проводов питания имеется так же тахометр для отображения количества оборотов в приложениях, например, Aida64.

Разъем на 4 pin встречается преимущественно в моделях стоимостью выше 8 долларов. Наличие четвертого провода обеспечивает регулировку оборотов в БИОС или в приложениях внутри системы. Такой тип подключения предпочтителен, так как позволяет отрегулировать температуру в оптимальном акустическом диапазоне. А при необходимости поднять обороты, когда понадобится высокая продуваемость корпуса.

Подключение типа Molex использует так же два провода «+» и «-». В сравнении с типом pin, что подключаются исключительно в разъем на материнской плате, molex соединяется с разъемом блока питания. Преимуществ такого разъема – только возможность изменения напряжения: 12, 7 или 5 вольт. Для этого достаточно сменить провода в нужной последовательности.

Тип подшипника

Для вращения вентилятора в центре установлен подшипник. Технология изготовления влияет на ресурс работы и акустический шум. Выделяют три основных типа подшипников:

Подшипник скольжения наиболее технологичный ввиду простоты изготовления и минимального количества деталей. Конструкция содержит втулку с антифрикционным материалом, где вращается цилиндрический вал. Благодаря этому стоимость производства благоприятно сказывается на общей цене вентилятора. Кроме того первые часы работы сопряжены низким акустическим шумом. Как только смазочный материал заканчивается, вентилятор начинает шуметь и выходит из строя. Средняя наработка на отказ до 30 000 часов работы.

Подшипник качения содержит внутреннее и наружное кольцо. Область между кольцами зовется сепаратор, что содержит тела качения – ролики или шарики. Изначальный акустический шум выше, в сравнении с подшипником скольжения ввиду большего числа элементов. С другой стороны шум не нарастает по мере эксплуатации. А благодаря средней наработке на отказ до 100 000 часов, срок службы вентиляторов выше в 2-3 раза больше.

Гидродинамический подшипник работает по принципу подшипника качения, только вместо тел качения под давлением закачивается слой масла. За счет ограничения контакта втулки и вала, снижается износ вращающихся элементов, чем достигается длительная работа на отказ – свыше 150 000. Кроме того отсутствие сильных вибраций и шума вплоть до окончания срока службы. Обычно шум возникает за полгода или меньше, после чего вентилятор выходит из строя. Предпочтительнее выбирать гидродинамический тип подшипника.

Отдельно стоит отметить варианты гидродинамических подшипников с магнитным центрированием. Например, такая технология используется в вентиляторах производства Noctua. Магнитное центрирование позволяет выравнивать ось вращения и исключить биение в момент запуска. Благодаря этому снижается шум и увеличивается продолжительность работы. Поэтому на всю продукцию распространяется гарантия 6 лет, при этом из отзывов владельцев вентиляторы стабильно работают и после 10 лет эксплуатации.

Обороты/шум

В процессе работы вентиляторы издают акустический шум. Доказано, что шум замедляет реакцию человека, а так же вызывает усталость и головную боль. Поэтому длительное нахождение рядом с шумным «ящиком» приведет только к утомляемости и не позволит сосредоточиться на важных делах.

Уровень шума указывается в , чем выше значение, тем громче работает вентилятор. На акустический шум влияет количество оборотов вентилятора. Чем больше оборотов за минуту совершает вентилятор, тем выше воздушный поток и значение акустического шума. А чем больше размер вентилятора, тем меньше требуется совершить оборотов. Кроме того высоко оборотистые вентиляторы дополнительно создают вибрацию, что только усиливает шумовые показатели.

Из личного опыта стоит отметить, что вентиляторы до 20 дБ не слышно в закрытом корпусе со слабой изоляцией шума. До 25 дБ акустический показатель нормальный и с набором из 5-7 вентиляторов в корпусе не сложно отработать за компьютером световой день. До 30 дБ шум достаточно отчетливый и длительная работа за компьютером не комфортна, при условии слабой изоляции в корпусе. Поэтому лучше подбирать вентиляторы в приделах до 26 дБ, а лучше в интервале 20-23 дБ.

Так же не стоит забывать, что на большинстве корпусов стоят пылевые решетки и поролоновые фильтры. При нагнетании воздуха сквозь преграды образуется статическое давление, что так же способствует возникновению шума. Наилучший исход в таком случае – установка нескольких вентиляторов с низкой скоростью оборотов. Чем меньше скорость вращения, тем ниже статическое давление и шум. А увеличенное количество вентиляторов позволит компенсировать снижение воздушного потока.

Жесткий диск

Жесткий диск это источник вибрации в первую очередь. Его необходимо изолировать от корпуса. Идеальный вариант это подвесить на что либо. В моем случае это оказалась витая пара. Эффект получился потрясающий, как будто жесткий диск работает завернутым в футболку.

Так же отличный вариант заклеить изолентой места соприкосновения жесткого диска и корпуса, если у вас прямой контакт, не через салазки (как у меня на фото).

Почему у меня HDD перевернут вверх ногами? Дело в том, что в 2009 году на работе поставили новые компьютеры фирмы HP, dv5750. В каждом компьютере был жесткий диск вверх ногами. Возник вопрос, как такая уважаемая жесткие диски. Присмотревшись по внимательнее, можно обнаружить, что при «правильном» расположении HDD нагретый воздух задерживается в полостях на дне жесткого диска. При «неправильном» расположении нагретый воздух без препятствий поднимался вверх. Поэтому было решено осваивать положение вверх ногами.

Читайте также:  Мотор вентилятора сильно греется

Замечу, что один из жестких дисков на 1.5 ТБ Seagate напрочь отказался заводится. Пришлось его использовать для резервного копирования вместе с док-станцией в вертикальном положении.

Для гашения вибраций HDD существуют способы с большими капиталовложениями и с сомнительной эффективностью отлично описаны в этой статье. Исключение составляет SCYTHE QUIET DRIVE

Это система охлаждения отлично справляется не только с вибрациями, но и с шумом винчестера. Температурный режим остается таким же как и без «глушителя».

В политику охлаждения жестких дисков для бесшумного компьютера не входит использовании активных систем охлаждения. Максимум, если у вас несколько HDD, примените 120 мм на 500-800 об/мин для обдува всей корзины.

Практически все пассивные системы охлаждения вынуждают нас устанавливать HDD в отсек для оптических приводов 5.25″. Поток холодного воздуха там практически отсутствуют и это негативно скажется на температурном режиме HDD. Если вы собираете тихий или бесшумный компьютер, то рекомендуется использовать экономичные и прохладные жесткие диски — нпример «зеленые» от WD.

Минимальное выделение тепла исключает использование активного охлаждения.

Так же при выборе корпуса обратите внимание на системы крепления HDD к корзине или к корпусу. Многие производители корпусов комплектуют свои изделия антивибрационными резиновыми прокладками. В корпусах высокого уровня этому уделяется немало внимания.

Вывод. Использовать в системе один HDD или, лучше SSHD. Если необходима производительность — установите SSD. Если необходима емкость — используйте внешние жесткие диски, но так же с пассивной системой охлаждения. Если не подходит использование внешних HDD попробуйте использовать два зеленых диска и максимально разнесите их в корпусе. Например вставьте в самый нижний и самый верхних отсек в корзине жестких дисков. Для меня оптимальным решением является использовании гибридных дисков SSHD. У них сниженная частота вращения шпинделя и есть несколько гигабайт флеш-памяти для повышения производительности.

Воздушный поток и статическое давление

Значение воздушного потока означает объем прокачиваемого воздуха за единицу времени. Чем больше воздуха прокачивает вентилятор, тем выше эффективность работы и выше воздушный поток. Обычно производители указывают воздушный поток в CFM – кубический фут в минуту или м3/ч – кубический метр за час. 1 м3/ч равен 35.3 CFM. Если возникнет необходимость перевести м3/ч в CFM, необходимо объем в м3/ч умножить на 35.3, а полученный результат разделить на 60. Для перевода CFM в м3/ч, необходимо цифру в CFM умножить на 60 и поделить на 35.3.

Статическое давление представляет собой разницу между давлением воздушного потока сформированного вентилятором и атмосферного давления. В характеристиках указывается в миллиметрах водяного столба (мм H2O). Вентиляторы с высоким атмосферным давлением имеет смысл использовать в местах, где продуваемость воздуха затруднена, например, на нагнетание.


Вентилятор Noctua NF-A12X25 PWM. Оптимальное сочетание воздушного потока и статического давления.

Устройство

Компьютерный вентилятор состоит из трех основных частей ⇒

Корпус вентилятора имеет форму в виде рамки и служит основанием для крепления электропривода (электродвигателя) и лопастей крыльчатки. В зависимости от фирмы производителя и качества изделия, корпус может изготавливаться из пластмассы, металла или резины.

Крыльчатка представляет собой набор лопастей, расположенных по кругу на одной оси с электродвигателем под определенным углом и закрепленных на корпусе вентилятора при помощи подшипников различного вида. Во время вращения, лопасти крыльчатки захватывают воздух и пропуская его через себя, создают постоянный направленный воздушный поток, который охлаждает греющийся элемент.

При производстве компьютерных вентиляторов используют электродвигатели постоянного тока, которые жестко крепятся к корпусу вентилятора.

Тип крепления

В большинстве случаев крепление вентиляторов осуществляется за счет металлических винтов. Так же доступна установка при помощи силиконовых/резиновых винтов. В сравнении с металлическими винтами использование силиконовых/резиновых аналогов помогает снизить передачу вибрации на корпус, а в результате уменьшить шум. А ещё сократить время монтажа. Обычно производители вентиляторов редко кладут крепеж в комплект с вентиляторами. В таком случае крепеж следует искать и покупать отдельно, на местных или китайских торговых площадках.


Резиновый крепеж. Просты в установке и помогают дополнительно гасить вибрацию.

Так же в отдельные модели вентиляторов часто встраиваются силиконовые накладки. При соприкосновении с корпусом вкладыши помогают дополнительно гасить вибрацию. Максимальная эффективность достигается в сочетании с силиконовым/резиновым крепежом.

Подсветка

Некоторые модели вентиляторов оборудованы светодиодами. Наличие подсветки не несет полезной функциональности, а только поможет осветить содержимое системного блока при наличии стеклянной боковой крышки. Выделяют два типа подсветки:

Вентиляторы с фиксированной подсветкой светят только одним цветом или сразу несколькими. Отключить подсветку невозможно, только если выпаять светодиоды.

В RGB используется контроллер, что позволяет менять подсветку автоматически или задать определенное свечение в программе на ПК/смартфона/пульта ДУ.

Краткий итог и рекомендации выбора

Наилучший вентилятор для корпуса лучше выбирать исходя из следующих критериев:

  1. Максимальный размер в соответствии с отверстиями под установку.
  2. Нужна регулировка оборотов – вариант на 4 pin, управление оборотами не нужно – 3 pin или molex.
  3. Тип подшипника лучше гидродинамический, а ещё лучше с магнитным центрированием.
  4. Вентиляторы с высокими оборотами и значением дБ – шумные. Оптимально присматривать варианты с низким шумом и/или количеством оборотов. При этом не игнорировать значение воздушного потока.
  5. Вентиляторы с высоким статическим давлением оптимально использовать для нагнетания или прокачки воздуха сквозь преграды. Варианты с высоким воздушным потоком эффективны для перемещения больших объемов воздуха.
  6. Наличие силиконовых накладок и/или крепежа аналогичного материала поможет снизить передачу вибрации на корпус.
  7. Для любителей ярких сборок с подсветкой лучше подойдут варианты с RGB подсветкой.

Наиболее доступное и эффективное решение – Deepcool XFAN 120. Средняя цена 2,74 USD, за что пользователь получает прочную раму, гидродинамический подшипник, наличие металлического крепежа в комплекте, а так же подключение 3 pin и molex. Воздушный поток и шум – 65 (данные с упаковки) CFM и 26 дБ. Из недостатков – отсутствие регулировки оборотов.


Deepcool XFAN 120 Наиболее доступный и эффективный 120-мм вентилятор.

За 13.6 USD отличное решение – Noctua NF-S12B redux-1200 PWM. Вентилятор премиального уровня порадует прочной рамой, металлическим крепежом в комплекте, гидродинамическим подшипником с магнитным центрированием, функцией регулировки оборотов и гарантией производителя в 6 лет. На максимальных оборотах воздушный поток 59,21 CFM при уровне шума 18.1 дБ. Работу вентилятора не слышно на отдалении 30-40 см.


Noctua NF-S12B redux-1200 PWM. Наиболее доступный 120-мм вентилятор производства Noctua.

Рейтинг вентиляторов

Классифицируют приборы по назначению, типу конструкции, принципу работы, способу установки. Самыми востребованными считают напольные и настольные аксиальные модели. При выборе рекомендуют учитывать массу агрегата, от которой зависит его устойчивость в момент работы на высокой мощности. Хотя для настенных вариантов этот параметр не принципиален. Какой вентилятор лучше для дома, мы определили путем сравнительных тестов следующих характеристик:

  • Тип;
  • Производительность;
  • Диаметр лопастей;
  • Уровень шума;
  • Устройство двигателя;
  • Цена;
  • Функционал;
  • Материал корпуса;
  • Размеры;
  • Вес;
  • Энергоэффективность;
  • Тип управления;
  • Количество скоростей.

Хорошие вентиляторы для дома нередко оснащены такими функциями, как обогрев, увлажнение, подсветка, ионизация, таймер. Это расширяет сферу применения климатической техники, но увеличивает ее цену. Модели в обзоре разбиты на 3 категории по принципу места их монтажа. В каждом разделе представлено их описание, преимущества и недостатки.

Источник