Меню

Конденсаторы для систем кондиционирования



Конденсатор кондиционера: основные параметры оборудования

Конденсатор, как и компрессор, является одним из главных компонентов любой холодильной системы. Он служит для переноса в окружающую среду тепловой энергии хладагента, и параметры этого агрегата могут быть разными. В отдельных случаях, исходя из этих характеристик, пользователь и выбирает кондиционер, поэтому об особенностях конденсатора следует знать заранее.

Как работает конденсатор?

Тепло хладагента посредством конденсатора обычно передается воздуху или воде. При этом показатель тепла приблизительно на 30% превышает холодопроизводительность самого кондиционера, и если последняя, к примеру, равна 20 кВт, то конденсатор способен выделить 25-27 кВт тепла.

Особенно популярными на рынке являются конденсаторы с воздушным охлаждением.

В чем особенность таких конденсаторов?

Этот агрегат состоит из теплообменника и вентиляторного блока, оснащенного электродвигателем. По трубкам теплообменника движется хладагент, а вентилятор обдувает их, таким образом охлаждая. Скорость потока обычно составляет 1-3,5 м/с.

При этом теплообменник состоит из оребренных трубок, имеющих диаметр в пределах 6-20 мм (выбирать нужный диаметр следует в зависимости от ряда факторов, включая потери давления, легкость обработки и др.) и расстояние между ребрами на уровне 1-3 мм. Как правило, трубки являются медными, и этот материал используется потому, что он не окисляется и обладает высокой теплопроводностью. Ребра при этом чаще всего изготавливают из алюминия.

Тип ребер может быть разным, что влияет на гидравлические и тепловые параметры теплообменника. Так, сложный профиль, имеющий множество выступов и просечек, может создать завихрения воздуха (турбулентность), который будет омывать теплообменник. Это повысит эффективность передачи тепла от хладагента к воздуху, а также увеличит холодопроизводительность самого кондиционера.

При этом трубки могут соединяться с ребрами двумя способами:

  • В ребрах проделываются отверстия, в которые вставляются трубки теплообменника. Это самый простой способ. Однако такое соединение снижает теплопередачу, поскольку контакт между трубками и ребрами будет не очень плотным, а если среда в конденсаторе будет загрязнена, на месте прилегания может образоваться коррозия, что еще сильнее снизит производительность агрегата.
  • В местах соединения трубок и ребер устанавливаются воротнички (буртики). Такой способ считается более сложным и дорогим, однако именно он позволяет увеличить поверхность теплообмена. Дополнительно же отдачу тепла хладагента увеличивают, создавая рифление внутренней поверхности трубок обменника. Это обеспечивает турбулентность при течении хладагента.

Как правило, в конденсаторе устанавливают 1-4 ряда трубок. Располагаются они по направлению потока хладагента, но иногда их могут также устанавливать в шахматном порядке, чтобы увеличить эффективность теплопередачи.

Как происходит охлаждение?

Следует помнить, что интенсивность теплообмена никогда не бывает одинаковой, пока хладагент движется по трубкам. В обменник он поступает сверху, а затем движется вниз. Вначале, когда хладагент захватывает 5% поверхности теплообменника, охлаждение оказывается самым интенсивным – скорость его движения высока, как и разница температур охлаждающего воздуха и самого хладагента. Далее, захватывая 85% поверхности (основной участок движения), хладагент конденсируется, и его температура остается константной. Затем, остальные 10% поверхности хладагент проходит, охлаждаясь. В этот момент он имеет жидкое состояние.

Конденсация хладагента происходит при температуре, превышающей температуру окружающего воздуха примерно на 10-20 градусов. Обычно он конденсируется при 42-55 градусах, хотя температура нагретого воздуха, выходящего из теплообменника, бывает всего на 2-5 градусов ниже температуры конденсации.

Как работают конденсаторы с водяным охлаждением?

Такие агрегаты могут иметь конструкцию трех разных типов. В частности, в продаже представлены:

1. Кожухотрубные конденсаторы.

Представляют собой стальной цилиндр, по обоим концам которого устанавливаются стальные решетки. К ним крепятся головки с патрубками, которые позволяют подключить агрегат к системе водяного охлаждения. В решетки также интегрируются медные, оребренные снаружи трубки – именно по ним и будет протекать вода. Как правило, диаметр трубок составляет 20 и 25 мм. Теплообмен в них максимально повышен, а холодная вода поступает снизу и затем выходит сверху. Как правило, эту воду берут из систем оборотного водоснабжения.

При работе такого конденсатора, пар хладагента из компрессора поступает в верхнюю часть кожуха из стали. Трубки с холодной водой омываются им, а затем пар заполняет все пространство между трубками и кожухом. В нижней части агрегата находится патрубок, который отводит жидкий хладагент. При контакте с водой пар хладагента тоже становится холодным, конденсируется при температуре, которая приблизительно на 5 градусов выше температуры выходящей воды, и накапливается на дне кожуха.

В отдельных случаях кожухотрубный конденсатор имеет также участок для дополнительного охлаждения, который располагается на дне и представляет собой пучок трубок, разделенных с основным трубопроводом перегородкой. Вода минимальной температуры, поступившая в конденсатор, вначале проходит этот участок, а затем поступает в основной трубопровод. Для передачи 1 кВт тепла проточной воде от хладагента в таком конденсаторе расход самой воды составляет примерно 170 л в час.

2. Конденсаторы «труба в трубе».

Этот тип агрегатов представляет собой систему двух спиральных трубок, одна из которых располагается внутри второй. По внешней или внутренней трубке впоследствии движется хладагент, а вторую выбирают для движения воды. Обе жидкости движутся навстречу друг другу, причем хладагент поступает в трубку сверху и выходит снизу, а вода – наоборот. При этом внутренняя трубка изготавливается только из меди, а внешняя может быть как медной, так и стальной. Также поверхности обеих трубок могут быть оснащены оребрением, повышающим эффективность теплообмена.

Лучше всего конденсаторы этого типа использовать в автономных системах кондиционирования или же установках охлаждения малой мощности. При этом следует учитывать главный недостаток такого оборудования – его конструкция неразъемна, поэтому трубки можно очищать только с применением химических средств.

3. Пластинчатые конденсаторы.

Эти агрегаты состоят из нескольких рядов пластин из стали, которые располагаются «елочкой». Как и в предыдущем варианте, вода и хладагент внутри теплообменника движутся навстречу друг другу. Для этого используются независимые контуры циркуляции.

Такие виды конденсаторов отличаются множеством преимуществ:

  • они обладают очень эффективным теплообменом,
  • они очень компакты,
  • они отличаются малым весом,
  • хладагент и охлаждающая вода имеют не слишком большую разницу температур, причем при поступлении в конденсатор температура воды, как правило, составляет 16 градусов, а в момент конденсации хладагента она достигает 32-36 градусов (если же температура поступающей воды составляет 24 градуса, то хладагент конденсируется при 37-40 градусах).

Учитывая это, пластинчатые конденсаторы могут использоваться в холодильных установках малой или средней мощности. При этом максимально возможное давление в рабочем режиме в водяном контуре будет равно 1 МПа, а в контуре хладагента будет всегда составлять 2,45 МПА.

Читайте также:  Сплит система настенного типа centek

Источник

Воздушные конденсаторы

Конденсатор в любом холодильном контуре является основным элементом. Именно в нем происходит фазовый переход холодильного агента их газообразного в жидкое состояние, что необходимо для дальнейшего циркуляции хладагента в контуре.

На фото: Схема работы воздушного конденсатора

Все конденсаторы в холодильной технике, независимо от их назначения, классифицируются по типу охлаждающей среды на воздушные, водяные и водо-воздушные. Такое разделение происходит из-за типа охлаждаемой среды, в которую отводится тепло от холодильного агента. Однако конденсаторы водяного охлаждения из-за большой стоимости воды и сложности дополнительного гидравлического контура используются намного реже. Водо-воздушные конденсаторы в силу своей специфики применяются еще реже, а вот воздушные конденсаторы в настоящее время наиболее широко используются в различных областях холодильной техники, в том числе, и в системах кондиционирования.

На фото: Воздушные конденсаторы

Воздушные конденсаторы также можно разделить на группы:

  • по типу оребрения (с пластинчатым и шайбовым);
  • по циркуляции воздуха (со свободной и принудительной циркуляцией);
  • по применяемому материалу (меднотрубные, стальные и из алюминиевых сплавов);
  • по конструкции (трубчатые и микроканальные);
  • по расположению теплообменника (горизонтальные, вертикальные и V-образные).

На фото: Воздушные конденсаторы

Воздушные конденсаторы также часто разделяют по производительности, однако цифры, которые регламентируют эту производительность, имеют различные значения в разных источниках. Так, например, чаще всего малые воздушные конденсаторы ограничиваются производительностью до 50 кВт, средние – от 50 до 1000 кВт, большие – свыше 1000 кВт.

На фото: Теплообменник конденсатора с пластинчатым оребрением

Что касается оборудования, работающего в области кондиционирования воздуха, то воздушный конденсатор применяют в большинстве случаев. В силу особенностей работы оборудования для систем кондиционирования область применяемых конденсаторов ограничивается. Так конденсатор с теплообменником со стальными трубами не используется. В качестве оребрения в настоящее время применяется только пластинчатое с шахматным расположением труб в пучке. Практика показала, что это наиболее эффективное расположение труб с точки зрения процесса теплообмена. Все остальные ограничения в применении того или иного вида воздушного конденсатора в системах кондиционирования не связаны с типом оборудования.

На фото: Микроканальные конденсаторы

Отдельно стоит остановиться на сравнительно новых воздушных конденсаторах – микроканальных. Это совершенно новый вид конденсаторов как по конструкции, так и по материалу, применяемому для их изготовления, и принципу циркуляции холодильного агента по теплообменнику. Микроканальный воздушный конденсатор имеет меньшие массогабаритные характеристики по сравнению с меднотрубными, он более эффективен с точки зрения теплообмена.

Многие производители в конструкциях чиллеров успешно применяют именно микроканальные воздушные конденсаторы. Основой для их изготовления служат материалы на основе алюминиевых сплавов. Однако все остальные компоненты холодильного контура соединяются между собой медными трубами. Работы по установке этих теплообменников в холодильные машины не представляют особой сложности, поскольку они поставляются уже с медными трубами под пайку при помощи обычных медно-фосфорных припоев.

Источник

Конденсатор кондиционера

Конденсатор кондиционера

Пусковые и рабочие конденсаторы кондиционера применяются для улучшения пусковых и рабочих характеристик электродвигателей компрессоров и вентиляторов.

Производители оборудования сами определяют характеристики и размеры конденсаторов. При замене неисправных конденсаторов на новые, безусловно, необходимо учитывать их рекомендации.

Пусковой конденсатор используется в пусковой цепи электродвигателя и рассчитан лишь на кратковременную работу. По сравнению с пусковым рабочий конденсатор постоянно включен в рабочую цепь. Он не только повышает коэффициент полезного действия, но и создает необходимый рабочий момент для пуска электродвигателя с постоянно расщепленной фазой.

На схеме обозначены: L1 — рабочая обмотка, L2 — пусковая обмотка, Ср — конденсатор рабочий, Сп — конденсатор пусковой, В — центробежный выключатель.

Для проверки конденсаторов, как правило, используется омметр с возможностью измерения емкости. Отсоедините токоподводящие провода от клемм конденсатора. И только после этого приложите щупы омметра к клеммам, как показано на рисунке. Проследите за отклонением стрелки, выбрав максимальный диапазон измерения сопротивления на мультиметре. При исправности конденсатора стрелка должна сначала резко отклониться, а затем постепенно вернуться в свою первоначальную позицию. У конденсаторов разной емкости угол и продолжительность отклонения стрелки отличаются друг от друга.

Если емкость конденсатора имеет отклонение от номинала более, чем на + / — 5%, то его необходимо заменить на новый аналогичной емкости.

Предлагаем и есть в наличии конденсаторы различной емкости для электродвигателей кондиционера.

Пусковые и рабочие конденсаторы компрессора в зависимости от его мощности имеют емкость 20 мкФ, 25 мкФ, 30 мкФ, 35 мкФ, 40 мкФ, 45 мкФ, 50 мкФ.

Пусковые конденсаторы двигателя вентилятора в зависимости от его мощности имеют емкость 1 мкФ, 1,2 мкФ, 1,5 мкФ, 2 мкФ, 4 мкФ, 6 мкФ.

Для кондиционеров могут применяться специальные сдвоенные конденсаторы с тремя выводами. В кондиционерах LG, например, используются сдвоенные конденсаторы емкостью 30/1.5 мкФ или 45/6 мкФ 450VAC. То есть, один конденсатор используется не только для компрессора, но и для двигателя вентилятора внешнего блока.

Маркировка конденсаторов для кондиционеров

Обозначение выводов конденсатора двойной емкости:
С (Common Connection) – общий вывод,
HERM (Hermetically Sealed Compressor) – подключение рабочей обмотки компрессора,
FAN (Fan Condenser) – подключение двигателя вентилятора.

Конденсатор электродвигателя

Конденсаторы К78-98 используются в качестве не только пусковых, но и рабочих в схемах управления однофазными асинхронными двигателями с целью создания вращающего магнитного поля. Причем, не только для однофазных, но и для трехфазных при включении в однофазную сеть. Диапазон номинальной емкости составляет от 1,5 до 100 мкФ.

Конденсаторы CBB65 – металлизированные полипропиленовые пленочные конденсаторы постоянной ёмкости в герметизированном цилиндрическом корпусе. Они способны накапливать заряд от 4 до 150 мкФ при рабочем напряжении переменного тока 450 В. Конденсатор CBB65 может применяться не только как пусковой, но и в качестве рабочего. Предельное допустимое отклонение ёмкости ±5%.

Конденсаторы CBB65 нашли применение при запуске (фазосдвигающие конденсаторы) и работе асинхронных электродвигателей. Область их применения широка. Не только для компрессоров холодильного оборудования, но и в системах кондиционирования воздуха (конденсаторы для кондиционеров). А также, в вентиляционных системах, различных машинах и агрегатах промышленного типа.

Перед подключением конденсаторов необходимо удостоверится в отсутствии накопленного заряда, а в дальнейшем использовать разрядный резистор.

Весь процесс производства конденсаторов, как правило, полностью автоматизированный. Работа ведется на высококачественном точном и уникальном оборудовании ведущих зарубежных компаний. Конденсаторы изготавливаются из полипропиленовой металлизированной пленки (Al + Zn) с крепленным краем. Конструкция конденсатора обладает способностью самовосстановления при электрическом пробое диэлектрика. Это сохраняет неизменными его параметры (емкость, тангенс угла потерь) даже при продолжительном использовании конденсаторов. Благодаря крепленому краю, обеспечивается хороший контакт с напыленным слоем на торце секции.

Читайте также:  Как подсоединить кондиционер напрямую без розетки

На производстве конденсаторы проходят обязательную операцию заливки компаундом, соответствующим классу пожаробезопасности V1 стандарта UL94. После сборки не только 100%-ный электронный контроль качества по емкости, но и по тангенсу угла потерь и электрической прочности.

Каталог конденсаторов для кондиционеров

Если требуется ремонт кондиционера с заменой компрессора — это к нам!

Источник

Конденсатор кондиционера

Конденсатор – важный аппарат в климатической технике, попробуем разобраться в принципах его работы.

Конденсатор (от лат. «condenso» — уплотняю) сплит-системы представляет собой теплообменный аппарат, превращающий вещества в жидкость, посредством конденсации (путем охлаждения).

Конденсаторами оснащены не только кондиционеры, они используются и на тепловых и атомных электростанциях, в целях конденсации отработавшего в турбинах пара. На тонну конденсируемого пара приходится примерно 50 тонн воды. При таких условиях ТЭС и АЭС, бесспорно, нуждаются в воде и в час используют её в районе 600 000 кубических метров.

Принцип конденсации успешно применяют для разделения смеси паров всевозможных веществ, конденсация которых протекает при разных температурах.

При конденсации пара вещества требуется избавить единицу его массы от теплоты, равной удельной теплоте конденсации. Теплота равна удельной теплоте парообразования при обратимых процессах. Таким образом, получаем, что при конденсации температура останется стабильной, до момента, когда весь пар не будет сконденсирован. Процесс конденсации, при котором параметры пара уже близки к состоянию насыщения, протекает при наличии его устойчивых параметров.

Таким образом, в среде с отсутствием достаточного количества воды, охлаждение воздухом – выход. Так конденсаторы турбин охлаждаются, при этом, охлаждение конденсатора воздухом снижает КПД турбин, так как температура конденсации увеличивается. Не имеют конденсатора, например, турбины с противодавлением —отработанный пар при этом утилизируется на производственные нужды.

Динамическое равновесие в конденсаторе достигается с поступлением новой порции пара, появляется вероятность наблюдения различий параметров среды.

В холодильных установках (кондиционеры, сплит-системы) конденсатор применяют с целью конденсации фреона (то есть паров хладагента). В разных отраслях конденсатор может применяться с различными целями, так в химической промышленности — для получения дистиллятов.

Источник

Кондиционер автомобильный: описание главных деталей схемы холодильной установки

Главная страница » Кондиционер автомобильный: описание главных деталей схемы холодильной установки

Практикуемые схемные решения, а также используемые типы компрессоров – основных компонентов системы кондиционирования воздуха автомобиля, представлены ранее опубликованным материалом сайта Zetsila. Этой статьёй рассматривается ещё ряд технологических деталей на кондиционер автомобильный, входящих в состав классической схемы установки.

Конденсатор кондиционера автомобильного – функция и конструкции

Какие применяются конденсаторы для автомобильного кондиционера? Какие виды испарителей поддерживает кондиционер автомобильный с целью получения высокой производительности по холоду?

Что такое TVX или TEV (Thermal Expansion Valve) или TEBV кондиционера автомобиля? Рассмотрим эти и другие моменты.

Главная функция конденсатора кондиционера автомобильного заключается в обеспечении действия теплообменника, отбирающего тепло от горячего хладагента за счёт охлаждения наружным воздухом.

Например, фреон R134a, традиционно заправляемый в кондиционер автомобильный, нагнетаемый компрессором в конденсатор, имеет состояние высокотемпературного пара высокого давления.

Когда парообразный фреон (R134a) высокой температуры проходит через трубки конденсатора, стенки трубок нагреваются, но тепло передаётся от стенок трубок более холодному окружающему воздуху.

Благодаря такому теплообмену, пары хладагента конденсируются (переходят из газообразного состояния в жидкое состояние). Фактически образуется жидкий фреон R134a высокого давления и температуры.

Типичная конструкция конденсаторов кондиционера автомобиля

Одним из вариантов исполнения выступает конструкция конденсатора змеевикового типа. Конструкция фактически содержит одну длинную металлическую трубку (как правило, медную), из которой сформирован «змеевик», дополненный рёбрами охлаждения на каждом участке трубы между сгибами.

Исполнение конденсатора кондиционера автомобиля: А – змеевиковый тип; B – тип параллельного включения трубок; 1 – входной патрубок под парообразный хладагент; 2 – выходной патрубок для жидкого хладагента; 3 – область дефлектора

Другой, не менее распространённый вариант, — сборка параллельно размещёнными участками труб. Эта конструкция конденсатора кондиционера автомобильного представляет своего рода радиатор поперечного потока.

Вместо прохождения хладагентом однотрубной системы (змеевиковый тип), здесь прохождение хладагента осуществляется через несколько труб. Этот инженерный подход даёт увеличение площади поверхностного контакта с наружным воздухом.

Поскольку автомобильные установки кондиционирования, работающие на фреоне R134a, функционируют при более высоких давлениях хладагента, требуются конденсаторы с меньшим внутренним потоком.

Поэтому большинство производителей автомобильных кондиционеров выбирают конденсатор параллельного потока для версии под R134a. Такие конструкции примерно на 25% эффективнее змеевиковых конденсаторов.

Фактор уплотнения конденсаторов кондиционера автомобиля

Предусматривается организация надёжного уплотнения между конденсатором и радиатором автомобиля для предотвращения возврата нагретого воздуха через неизолированные пространства (обычно 25 мм).

Когда наружный воздух пропускается через конденсатор (продувается вентилятором радиатора), температура воздуха увеличивается. Если между конденсатором и радиатором имеются зазоры, нагретый воздух может циркулировать обратно через конденсатор.

Этот момент приводит к повышению температуры конденсатора, соответственно, вызывает снижение производительности автомобильной системы кондиционирования воздуха.

Вентилятор конденсатора на кондиционер автомобильный

Большинству автомобилей, оборудованных кондиционером, требуется электрический вентилятор — устройство содействия потоку воздуха. Благодаря вентилятору, воздух проталкивается (или протягивается, в зависимости от того, на какой стороне конденсатора установлен вентилятор), через межтрубное пространство.

Типичное исполнение вентиляторов конденсатора кондиционера автомобильного: 1 – стандартная конвенциональная конструкция; 2 – конструкция с ассиметричными лопастями крыльчатки. Второй вариант путём перестановки лопастей позволяет менять направление воздуха

Большинство кондиционеров автомобильных, где используется фреон R134a, требуют дополнительного охлаждения конденсатора по причине более высокого рабочего давления R134a.

Также львиная доля современных автомобилей, как правило, имеют уменьшенные решётки бамперов, чем ухудшаются условия прохождения воздушного потока. Вентиляторы конденсатора кондиционера автомобильного, включаются в работу различными способами:

  • реле среднего давления,
  • косвенным подключением к муфте компрессора,
  • через электронный модуль управления (ECM),
  • сигналом активации переключателя кондиционера.

Схема включения вентилятора кондиционера автомобильного: 1 – вентилятор; 2 – реле пусковое; 3 – компрессор холодильный; 4 – предохранитель в цепи питания; 5 – аккумуляторная батарея

Увеличенное использование (время работы) вентиляторов охлаждения характерно для систем кондиционирования на фреоне R134a по причине образования более высокой температуры сжатия хладагента в компрессоре.

Испаритель кондиционера автомобильного – функция и конструкции

Хладагент R134a поступает в змеевик испарителя в виде жидкости низкого давления и низкой температуры. Когда такая низкотемпературная жидкость проходит через змеевик испарителя, поверхность трубки змеевика охлаждается фактически до температуры проходящей жидкости.

В свою очередь тёплый салонный воздух, продуваемый вентилятором через трубную систему испарителя, охлаждается за счёт эффекта теплообмена. Этим эффектом отмечена главная функция испарителя кондиционера автомобильного.

Читайте также:  Нет смыва кондиционера в стиральной машине

На практике используются испарители кондиционеров автомобильных:

  • пластинчатого типа,
  • ребристого типа,
  • змеевикового типа.

Работа испарителей первых двух типов аналогична работе конденсатора автомобильного кондиционера с параллельным потоком, когда имеет место многопоточный ход хладагента и создаётся увеличенное поверхностное охлаждение.

Распространённая конструкция испарителя пластинчатого типа, применяемого на кондиционерах автомобильных под фреон R134a: 1 – вход жидкого фреона низкого давления; 2 – выход парообразного фреона низкого давления; 3 – разделяющие дефлекторы (перегородки)

Соответственно, большинство производителей кондиционеров автомобильных предпочитают дизайн пластинчатых и ребристых испарителей для фреона R134a. Так достигается увеличение производительности на 20% по сравнению с конструкциями змеевикового типа.

Кондиционер автомобильный и клапан теплового расширения

Поток хладагента, поступающего в трубки испарителя, необходимо контролировать для достижения максимального эффекта охлаждения и обеспечения полного испарения жидкого хладагента.

Такой эффект достигается при помощи теплового расширительного клапана (TXV — Thermal Expansion Valve). Также встречается иностранная аббревиатура TEV, но общей сути устройства не меняет.

Устройство клапана теплового расширения, применяемого в схемах кондиционеров автомобильных: 1 – пружина; 2 – трубка-дозатор; 3 – диафрагма; 4 – хладагент; 5 – капиллярная трубка; 6 – шариковый клапан; 7 – трубка компенсирующего давления: А – нажимной шток

Клапаном теплового расширения контролируется поток хладагента посредством системы компенсации давлений, работу которой сопровождают:

  • трубчатый капиллярный датчик температуры ( F1 ),
  • трубка компенсации давления ( F2 ),
  • пружина нажимная ( F3 ).

Когда температура фреона на выходе испарителя увеличивается, хладагент ( 4 ) внутри капиллярной трубки клапана расширяется. Сила расширения двигает диафрагму ( 3 ) по направлению вниз.

Под действием диафрагмы двигается также штифт ( A ), оказывая воздействие на шариковый клапан ( 6 ). В результате шарик открывает дозирующее отверстие ( 2 ), позволяя большему количеству R134a проходить в сторону впускного патрубка испарителя. Так работает функция «открывания».

Обратная функция – «закрывания», действует следующим образом: по мере охлаждения выпускной трубы испарителя, хладагент внутри капиллярной трубки ( 5 ) сжимается. Силы F2 и F3 приводят диафрагму ( 3 ) в движение.

При этом штифт ( A ) передвигается вверх, двигая шариковый клапан в направлении дозирующего отверстия ( 2 ), ограничивая поток фреона R134a. По мере повышения температуры на выходе испарителя (в результате открывания), процесс закрытия повторяется.

Кондиционер автомобильный — блок клапанов теплового расширения

Наряду с описанной выше конструкцией клапана теплового расширения, в схемах кондиционеров автомобильных применяется также блок клапанов теплового расширения (TEBV — Thermal Expansion Block Valve).

Этот вид запорной арматуры отличается наличием четырёх проходов, но функционально действует аналогично выше упомянутой арматуре.

Блочная версия клапана теплового расширения, также применяемого на авто-кондиционере: 1 – пружина; 2 – шариковый клапан; 3 – дозирующее отверстие; 4 – область компенсационного давления; 5 – металлическая диафрагма; 6 – хладагент; 7 – чувствительный элемент; 8 – активирующий шток

Работа блока клапанов теплового расширения по-прежнему основана на принципе расширения / сжатия хладагента внутри диафрагмы (5), но в этой конструкции исключена отдельная капиллярная трубка.

Вместо капиллярной трубки определение изменения температуры и давления хладагента осуществляется через выход испарителя и запорный клапан. Когда хладагент со стороны выхода испарителя проходит через чувствительный элемент (7), происходит расширение или сжатие хладагента.

Как результат — активирующий штифт (8) отодвигает шариковый клапан (2) или придвигает к дозирующему отверстию. Этой операцией регулируется количество хладагента на входе змеевика испарителя в зависимости от заданной температуры.

Термин «перегрев» кондиционер автомобильный

Определённой области испарителя кондиционера автомобиля присущ характерный эффект — полное испарение хладагента R134a. После такого эффекта любое дополнительное тепло, поглощаемое парами R134a, описывается как «перегрев».

Значение «перегрева» можно представить как разность температур выше точки, в которой жидкий фреон R134a превращается в пар. Как правило, значения для компенсации перегрева тепловым расширительным клапаном устанавливаются на заводе-изготовителе этой запорной арматуры.

Поэтому следует убедиться в случае замены, что клапан относится к типу, подходящему для системы кондиционирования. Температура насыщения равна температуре, при которой хладагент в жидкой форме превращается в пар при данном давлении.

Фактическая температура равна температуре хладагента на выходе испарителя. Отсюда температура «перегрева» вычисляется, как:

Тфакт. – Т насыщ. = Т перегр.

Уплотнения, гибкие шланги и сервисные порты

Резиновая смесь, применяемая для изготовления уплотнительных колец:

  • соединений,
  • фитингов,
  • компонентов системы кондиционирования,

используемых с фреоном R134a, представляет собой гидрированный бутадиен-нитрильный каучук (HNBR — Hydrogenated Nitrile Butadiene Rubber).

Резина на основе этой смеси, имеет зелёный оттенок. Смазка уплотнительных колец выполняется посредством минерального масла.

Кондиционер автомобильный — шланги специальные резиновые

Все шланги и трубки, входящие в комплект кондиционера автомобильного, предварительно смазываются. Также подлежат смазыванию уплотнительные кольца, поставляемые в качестве запасных. Другие производители могут использовать уплотнительные кольца другого цвета и размера.

Следует убедиться, что для типа обслуживаемой или ремонтируемой системы используются подходящие уплотнительные кольца. Нельзя использовать уплотнительные кольца под фреон R12 в системе, где заправлен фреон R134a.

Подмена непременно приведёт к повреждению уплотнительных колец по причине отсутствия хлора в составе фреона R134a. Между тем допустимо применять уплотнительные кольца для фреона R134a в системе с фреоном R12.

Гибкие резиновые шланги автомобильного кондиционера: A – под хладагент R12; B – под хладагент R134a; 1(A) – каучуковый нитрил; 1(B) – нейлон; 2(A) – армирование; 2(B) – каучуковый нитрил; 3(A) – резина; 3(B) – армирование; 4 — резина

Гибкие резиновые шланги под фреон R134a и R12 также имеют некоторые отличия. Шланги для хладагента R134a отличаются наличием нейлоновой внутренней облицовкой.

Благодаря такой облицовке, практически полностью исключена утечка хладагента, которая естественным образом происходит по причине пористой структуры резиновых шлангов.

Шланги под фреон R134a имеют меньший наружный диаметр и более тонкие стенки, обеспечивая лучшую гибкость и снижение уровня шума в системе кондиционирования. Нельзя использовать шланги под хладагент R12 в системе кондиционирования на фреоне R134a.

Масло типа PAG и водород, присутствующие в составе хладагента R134a, приводят к быстрому износу обычных нитриловых шлангов для фреона R12. Плюс к этому шланги под хладагент R12 обычно имеют больший наружный диаметр, что способствует увеличению уровня шума.

Кондиционер автомобильный — сервисные порты системы

Сервисные порты для зарядки фреоном устанавливаются:

Эти порты зарядки позволяют обслуживать и тестировать систему кондиционирования непосредственно под давлением. Порты разных размеров определяют верхнюю и нижнюю стороны системы кондиционирования.

Пластиковая крышка с резиновым уплотнением используется для закрытия отверстия зарядного порта и предотвращения утечки. Специальная конструкция зарядного клапана разработана для соответствия зарядным портам R134a.

Клапаны Шредера допускают некоторую утечку, поэтому должны закрываться пластиковыми защитными колпачками. Клапаны Шредера, предназначенные для R134a, должны использоваться только в системах на R134a.

Источник