Меню

Легочная вентиляция частота дыхательных движений



ЛЁГОЧНАЯ ВЕНТИЛЯЦИЯ

Лёгочная вентиляция — аэрация легких с обменом газов между атмосферным и альвеолярным воздухом, обеспечивающая обновление альвеолярного воздуха и поддержание в нем парциального давления кислорода и углекислого газа на уровне, необходимом для нормального газообмена.

В основе Лёгочной вентиляции лежит дыхательный акт, осуществляемый за счет сокращения дыхательных мышц (см. Дыхание). Мерой Лёгочной вентиляции является минутный объем дыхания, определяемый как произведение частоты дыхания в 1 мин. на дыхательный объем вдоха или выдоха. Частота дыхания (ЧД) в норме колеблется от 10 до 16 дыхательных циклов в 1 мин. Дыхательный объем в норме составляет 300—900 мл и зависит от положения тела — в вертикальном положении он больше, чем в горизонтальном. Дыхательный объем вдоха обычно немного больше, чем выдоха, т. к. объем потребляемого кислорода больше объема выделяемого углекислого газа (см. Дыхательный коэффициент). Глубина вдоха, так же как частота дыхания, зависит от интенсивности физ. нагрузки и состояния организма.

Минутный объем дыхания (МОД) в нормальных условиях зависит от потребности в кислороде и в покое колеблется от 3,2 до 10 л, составляя в среднем 6 л/мин. В связи с вариабельностью МОД даже в норме необходимо сравнивать МОД с его должной величиной, учитывающей индивидуальные особенности данного лица (пол, возраст, рост, массу тела).

При одном и том же значении МОД альвеолярная вентиляция может быть различной: частое и поверхностное дыхание менее рационально, т. к. при нем увеличивается часть дыхательного объема, вентилирующего мертвое пространство (Уд), не достигающего альвеол; при медленном и глубоком дыхании альвеолярная вентиляция более эффективна. Т. о., несмотря на определенное значение МОД в оценке состояния органов дыхания, он не является абсолютным показателем эффективной альвеолярной вентиляции. Измерение МОД, однако, приобретает решающее значение, когда при дыхании воздухом он оказывается ниже должной нормы. В этом случае развивается гиповентиляция, ведущая к гипоксемии (см. Гипоксия), гиперкапнии (см.) и дыхательному ацидозу (см.). Повышенная вентиляция легких наблюдается при многих физиологическмх состояниях вследствие усиления возбуждения дыхательного центра (см.). При выполнении физ. работы, гиперкапнии, в условиях кислородной задолженности и накопления в тканях молочной к-ты, при умеренной степени кислородного голодания развивается гиперпноэ — увеличение Л. в., компенсирующее нарушение газового состава крови. Гипервентиляция, т. е. повышение Л. в. сверх потребностей организма, определяемых уровнем обмена веществ, приводит к гипокапнии (см.) и дыхательному алкалозу (см.). Гипервентиляция может возникать и при произвольном усилении дыхания, а также в условиях перегревания организма.

Для определения соответствия МОД данному лицу вычисляют дыхательный эквивалент (ДЭ) и вентиляционный эквивалент (ВЭ); ДЭ — это объем воздуха (в л), который должен пройти через легкие для поглощения ими 100 мл кислорода; его вычисляют путем деления фактического МОД на должное потребление кислорода, умноженное на 10 (в среднем ДЭ составляет 2,4). ВЭ — это та же величина, но вычисляется по отношению к фактическому потреблению кислорода, а не к должному.

Вследствие сложности структуры легких вдыхаемый воздух даже в норме распределяется в них неравномерно. Так, если на долю правого и левого легкого приходится 55 и 45% всего вентилируемого и потребляемого объемов кислорода соответственно, то и внутри каждого из них вдыхаемый воздух проникает в альвеолы отдельных участков легкого в неодинаковом количестве.

Методы определения равномерности альвеолярной вентиляции основаны на оценке скорости распределения в легких вдыхаемого газа.

По методу «одиночного вдоха» делают однократный вдох чистого кислорода с последующим медленным выдохом в расходомер (см. Газовый счетчик). При этом производится непрерывный анализ концентрации азота в выдыхаемом воздухе, к-рая после относительно стабильного уровня в последних 500 мл выдоха в норме нарастает не более чем на 4% . При нарушениях нарастание концентрации больше, что объясняется неравномерностью распределения газа в различных участках легких при вдохе и различной скоростью истечения газовой смеси при выдохе.

Метод «множественных вдохов» основан на определении скорости вымывания азота из легких при дыхании чистым кислородом. Одна из модификаций этого метода заключается в том, что после 7-минутного дыхания чистым кислородом производится форсированный выдох и в выдыхаемом воздухе определяется концентрация азота, к-рая в норме не превышает 2,5%. При нарушении равномерности вентиляции в гиповентилируемых участках легких остается много азота, который и выделяется при форсированном выдохе.

Потребность организма в кислороде в те или иные моменты времени определяется интенсивностью тканевого обмена (см. Обмен веществ и энергии). Всякое увеличение интенсивности окислительных процессов в организме сопровождается возрастанием потребности в кислороде, увеличением его поглощения и, как следствие, увеличением МОД. Степень использования кислорода вдыхаемого воздуха зависит от глубины дыхания, его частоты, совершенства корреляции между Лёгочной вентиляцией и кровотоком в легких и т. д. Состояние альвеолярных мембран, через которые осуществляется диффузия кислорода, также влияет на степень утилизации кислорода в легких. Существенное влияние на характер дыхания, и в частности на величину МОД, оказывают высшие отделы ц. н. с. Имеется четкая связь между величиной МОД и степенью различных эмоциональных реакций, интенсивностью умственной деятельности, слуховых и других раздражителей. В связи с этим при определении Л. в. следует исключать эмоциональные реакции.

Некоторые изменения функции аппарата внешнего дыхания, механизмы адаптации к воздействию каких-либо факторов могут выявляться лишь при использовании специальных проб, или нагрузок, получивших название «функциональные легочные пробы». С их помощью можно выявлять скрытые формы сердечно-легочной недостаточности, которые не обнаруживаются при обычных исследованиях. Максимальная вентиляция легких (МВЛ) —максимальное количество воздуха, к-рое проходит через легкие за 1 мин. Эта проба является показателем функциональной способности аппарата внешнего дыхания; если жизненная емкость легких (см.) является показателем функц, возможностей у данного лица, то МВЛ отражает, как эти возможности реализуются у него. МВЛ может быть определена спирометрически (см. Спирография), с помощью расходомеров или мешка Дугласа. Обследуемый должен дышать с максимальными частотой и глубиной в течение 15—20 сек., после чего МВЛ приводится к 1 мин. и выражается в процентах к должным нормам. В норме МВЛ составляет 50 — 180 л/мин; она снижается при различных сердечно-легочных заболеваниях.

Резерв дыхания — разница между МВЛ и МОД, показывающая, на сколько может быть увеличена величина Л. в. В норме резерв дыхания составляет 85—90% от величины МВЛ. При дыхательной недостаточности (см.), когда увеличивается МОД и снижается МВЛ, резерв дыхания также снижается; резко уменьшается и его соотношение с МВЛ (в отдельных случаях до 55—50%).

Пробы с дозированной физ. нагрузкой применяются для выявления скрытых форм сердечно-легочной недостаточности и характера адаптации к воздействию каких-либо факторов. Величину, характер и интенсивность нагрузки выбирают в зависимости от целей и задач исследования (приседания, ходьба и бег на месте, ходьба по трехступенчатой двусторонней лестнице, работа на ручном или гребном эргометре, на велоэргометре, плавание в водном третбане и пр.).

Увеличение потребности организма в кислороде при физ. работе удовлетворяется за счет включения приспособительных механизмов: достаточно быстро и адекватно мощности нагрузки увеличиваются МОД и минутный объем крови, отмечается нек-рое увеличение дыхательного коэффициента (ДК). Быстрое возвращение их к исходному уровню в период восстановления (отдыха) свидетельствует о хорошем состоянии сердечнососудистой и дыхательной систем. При недостаточности этих систем отмечается большее увеличение МОД, медленное и недостаточное увеличение потребления кислорода, незначительное возрастание ДК. Поскольку границы функц, способности внешнего дыхания значительно шире, чем системы кровообращения, то увеличение периода восстановления свидетельствует прежде всего о функциональной неполноценности системы кровообращения.

Вентиляционный индекс (показатель) Гаррисона используется для оценки состояния внешнего дыхания и вычисляется как отношение суммы МОД за 2 мин. нагрузки и МОД за 5 мин. восстановления к ЖЕЛ. При 6 круговых восхождениях по трехступенчатой лестнице в норме он равняется 19, при 24 восхождениях — 35,7. При дыхательной недостаточности индекс увеличивается.

В практической работе при решении частных задач применяют дополнительно еще ряд проб: вдыхание чистого азота, гипоксических, гиперкапнических смесей и их комбинаций, гистаминовую пробу и т. д.

Читайте также:  Лопасти для промышленных вентиляторов

Радиоизотопное исследование легочной вентиляции

Для изучения вентиляционной функции различных отделов легкого с помощью радиоактивного ксенона ( 133 Xe), содержащегося во вдыхаемом воздухе, используют специальный радиограф типа «Ксенон». Исследование производят в специальном кресле. Датчики устанавливаются парами: верхние на 5—6 см ниже VII шейного позвонка, на расстоянии 5—6 см от средней линии тела; нижние — на уровне VIII — IX грудных позвонков; средние — на середине расстояния между верхними и нижними детекторами. Исследуемый дышит через закрытую систему «спирограф — больной» в течение 3 мин. Затем на выдохе производит переключение на дыхание из объема спирографа, куда вводят 250—350 мккюри нуклида на 1 л вдыхаемого воздуха. После установки динамического равновесия между концентрацией газа в объеме спирографа и легких исследуемый производит максимальный вдох р задержкой дыхания на 10—15 сек., а затем максимальный выдох также с последующей задержкой дыхания на 10—15 сек. Через 20—30 сек. больного «отключают» от спирографа, но регистрация продолжается до выведения 85—90% радиоактивной газовой смеси. Количественно результаты исследования обычно выражаются в величинах общей емкости легких, жизненной емкости легких (ЖЕЛ) и остаточного объема (ОО). Сопоставляя радиоспирографические показатели ЖЕЛ, выраженные в условных единицах активности, со спирографическими показателями ЖЕЛ, выраженными в объемных единицах, определяют количество воздуха, соответствующее одной условной единице активности.

Изучение вентиляции и перфузии легких в норме показало, что время смешивания 133 Xe с альвеолярным воздухом легких при обычном для исследуемого ритме дыхания составляет 39,2 ± 6,4, сек., а время выделения нуклида из легких длится 4,5 ±3,7 сек. Наибольший уровень максимального накопления нуклида определяется в нижней зоне и незначительно превышает накопление нуклида в средней зоне. При сравнении степени накопления радиоактивного газа в симметричных отделах обоих легких отмечается превышение показателей вентиляции по всем трем зонам правого легкого над аналогичными зонами левого легкого.

Исследования вентиляционной функции легких ксеноном, учитывая быстрое выведение нуклида из организма, сопровождаются весьма незначительной лучевой нагрузкой (примерно в 100 раз меньше облучения больного при рентгеноскопии).

Радиопневмографию проводят при обследовании детей с хроническими неспецифическими процессами (бронхоэктатической болезнью, хроническим бронхитом, бронхиальной астмой, эмфиземой и др.) с целью определения степени нарушения вентиляции различных отделов легкого и оценки эффективности различных видов терапии.

Радиопневмографию применяют также при обследовании детей после оперативного лечения с целью определения динамики и степени развития компенсаторных процессов. Метод применим и при обследовании больных хронической пневмонией, состоящих на диспансерном учете.

Библиография: Амосов И. С. и др. Внешнее дыхание при различных положениях тела по данным рентгенофункционального и радиоизотопного исследований, Мед. радиол., т. 21, № И, с. 24, 1976, библиогр.; Гиммельфарб Г. Н. и Остреров Б.М. Наркоз, искусственная вентиляция легких и легочное кровообращение, Ташкент, 1978, библиогр.; Зубовский Г. А. и Павлов Б.Г. Скеннирование внутренних органов, с. 144, М., 1973; Иоффе Л. Ц. и Светышева Ж. А. Механика дыхания (Методы оценки механики самостоятельного дыхания и искусственной вентиляции легких), Алма-Ата, 1975; Физиология дыхания, под ред. Л. Л. Шика, с. 279, Л., 1973; Gоmrоe J. H. Physiology of respiration, Chicago, 1974; West J. B. Ventilation, blood flow and gas exchange, Oxford, 1977.

Л. P. Исеев; И. А. Переслегин (рад.).

Источник

Легочная вентиляция частота дыхательных движений

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений. Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60—70 в 1 мин, а у людей в возрасте 25—30 лет — в среднем 16 в 1 мин. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания — вентиляцию легких. Количественной мерой вентиляции легких является минутный объем дыхания — это объем воздуха, который человек вдыхает и выдыхает за 1 мин. Величина минутного объема дыхания человека в покое варьирует в пределах 6—8 л. При физической работе у человека минутный объем дыхания может возрастать в 7—10 раз.

Рис. 10.5. Объемы и емкости воздуха в легких человека и кривая (спирограмма) изменения объема воздуха в легких при спокойном дыхании, глубоком вдохе и выдохе. ФОЕ — функциональная остаточная емкость.

Легочные объемы воздуха. В физиологии дыхания принята единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла (рис. 10.5). Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом. Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000 мл). Максимальное количество воздуха, которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна примерно 1200 мл.

Сумма величин двух легочных объемов и более называется легочной емкостью. Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500 мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600 мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700 мл.

При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня функциональной остаточной емкости, и его величина при спокойном дыхании составляет дыхательный объем, а при глубоком дыхании — достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости пассивно, за счет эластической тяги легких. Если в объем выдыхаемого воздуха начинает входит воздух функциональной остаточной емкости, что имеет место при глубоком дыхании, а также при кашле или чиханье, то выдох осуществляться за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обусловливает наибольшую скорость потока воздуха в дыхательных путях.

Источник

Оценка функций дыхания

Дыхание — это единый процесс, осуществляемый целостным организмом и состоящий из трех неразрывных звеньев:
а) внешнего дыхания, то есть газообмена между внешней средой и кровью легочных капилляров;
б) переноса газов, осуществляемого системами кровообращения;
в) внутреннего (тканевого) дыхания, то есть газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту.

Система внешнего дыхания

Система внешнего дыхания состоит из легких, верхних дыхательных путей и бронхов, грудной клетки и дыхательных мышц (межреберные, диафрагма и др.). Внешнее дыхание обеспечивает обмен газов между альвеолярным воздухом и кровью легочных капилляров, то есть насыщение венозной крови кислородом и освобождение ее от избытка углекислоты, что свидетельствует о взаимосвязи функции внешнего дыхания с регуляцией кислотно-щелочного равновесия. В физиологии дыхания функцию внешнего дыхания разделяют на три основные процесса — вентиляцию, диффузию и перфузию (кровоток в капиллярах легких).

Читайте также:  Диаметр трубы под кухонную вытяжку

Под вентиляцией следует понимать обмен газа между альвеолярным и атмосферным воздухом. От уровня альвеолярной вентиляции зависит постоянство газового состава альвеолярного воздуха.

Альвеолярная вентиляция равна разности между объемом дыхания в минуту и объемом «мертвого» пространства, умноженной на число дыханий в минуту. Объем вентиляции зависит прежде всего от потребности организма в кислороде при выведении определенного количества углекислого газа, а также от состояния дыхательных мышц, проходимости бронхов и пр. Не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объем вдыхаемого воздуха равен 500 мл, то 150 мл остается в «мертвом» пространстве, и за минуту через дыхательную зону легких в среднем проходит (500 мл — 150 мл) х 15 (частота дыхания) = 5250 мл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. «Мертвое» пространство возрастает при глубоком вдохе, его объем зависит также от массы тела и позы обследуемого.

Диффузия — это процесс пассивного перехода кислорода из легких через альвеоло-капиллярную мембрану в гемоглобин легочных капилляров, с которыми кислород вступает в химическую реакцию.

Перфузия (орошение) легких кровью по сосудам малого круга. Об эффективности работы легких судят по соотношению между вентиляцией и перфузией. Указанное соотношение определяется числом вентилируемых альвеол, которые соприкасаются с хорошо перфузируемыми капиллярами. При спокойном дыхании у человека верхние отделы легкого расправляются полнее, чем нижние. При вертикальном положении нижние отделы перфузируются кровью лучше, чем верхние.

Легочная вентиляция

Легочная вентиляция повышается параллельно увеличению потребления кислорода, причем при максимальных нагрузках у тренированных лиц она может возрастать в 20—25 раз по сравнению с состоянием покоя и достигать 150 л/мин и более. Такое увеличение вентиляции обеспечивается возрастанием частоты и объема дыхания, причем частота может увеличиться до 60—70 дыханий в минуту, а

дыхательный объем — с 15 до 50% жизненной емкости легких (Н. Monod, М. Pottier, 1973). В возникновении гипервентиляции при физических нагрузках важную роль играет раздражение дыхательного центра в результате высокой концентрации углекислого газа и водородных ионов при высоком уровне молочной кислоты в крови.

Гипервентиляция, вызываемая физическими нагрузками, всегда ниже максимальной вентиляции, и увеличение диффузной способности кислорода в легких во время работы также не является предельным. Поэтому, если отсутствует легочная патология, дыхание не ограничивает мышечную работу. Важный показатель — потребление кислорода — отражает функциональное состояние кардиореспи-раторной системы. Существует связь между факторами циркуляции и дыхания, влияющими на объем потребляемого кислорода. Во время физических нагрузок потребление кислорода значительно увеличивается. Это предъявляет повышенные требования к функции сердечно-сосудистой и дыхательной систем. Поэтому кардиореспираторная система при мышечной работе подвержена изменениям, которые зависят от интенсивности физических нагрузок.
Исследование функции внешнего дыхания в спорте позволяет наряду с системами кровообращения и крови оценить функциональное состояние спортсмена в целом и его резервные возможности. Исследование начинают со сбора анамнеза, затем переходят к осмотру, перкуссии и аускультации. Осмотр позволяет определить тип дыхания, установить наличие или отсутствие одышки (особенно при тестировании) и т.п. Определяют три типа дыхания: грудной, брюшной (диафрагмальный) и смешанный. При грудном типе дыхания на вдохе заметно поднимаются ключицы и происходит движение ребер. При этом типе дыхания объем легких возрастает главным образом за счет движения верхних и нижних ребер. При брюшном типе дыхания увеличение объема легких происходит в основном за счет движения диафрагмы — на вдохе она опускается вниз, несколько смещая органы брюшной полости. Поэтому стенка живота на вдохе при брюшном типе дыхания слегка выпячивается. У спортсменов, как правило, смешанный тип дыхания, где участвуют оба механизма увеличения объема грудной клетки.

Перкуссия (поколачивание) позволяет определить изменение (если оно есть) плотности легких. Изменения в легких являются обычно следствием некоторых заболеваний (воспаление легких, туберкулез и др.).

Аускультация (выслушивание) определяет состояние воздухоносных путей (бронхов, альвеол). При различных заболеваниях органов дыхания прослушиваются весьма характерные звуки — различные хрипы, усиление или ослабление дыхательного шума и т.д. Исследование внешнего дыхания проводят по показателям, характеризующим вентиляцию, газообмен, содержание и парциальное давление кислорода и углекислого газа в артериальной крови и по другим параметрам. Для исследования функции внешнего дыхания пользуются спирометрами, спирографами и специальными аппаратами открытого и закрытого типа. Наиболее удобно спирографическое исследование, при котором на движущейся бумажной ленте записывается кривая — спирограмма.

По этой кривой, зная масштаб шкалы аппарата и скорость движения бумаги, определяют следующие показатели легочной вентиляции: частоту дыхания (ЧД), дыхательный объем (ДО), минутный объем дыхания (МОД), жизненную емкость легких (ЖЕЛ), максимальную вентиляцию легких (МВЛ), остаточный объем легких (ОО), общую емкость легких (ОЕЛ). Кроме того, исследуется сила дыхательной мускулатуры, бронхиальная проходимость и др.
Легочная вентиляция связана с функцией дыхательных мышц (рис.3). Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движениями частей грудной стенки и диафрагмы.

Дыхательные мышцы — это те мышцы, сокращение которых изменяет объем грудной клетки. Вдох создается расширением грудной клетки (полости) и всегда является активным процессом. Обычно главную роль во вдохе играет диафрагма. При усиленном вдохе сокращаются дополнительные группы мышц.
Выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условия для вдоха. Расслабление связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. При усиленном выдохе в дополнение к другим мышечным группам действуют внутренние межреберные мышцы, а также брюшные мышцы.

Объем легких при вдохе не всегда одинаков. Объем воздуха, вдыхаемый при обычном вдохе и выдыхаемый

при обычном выдохе, называется дыхательным воздухом (ДВ).
Остаточный воздух (ОВ) — объем воздуха, оставшийся в невозвратившихся в исходное положение легких. Частота дыхания (ЧД) — количество дыханий в 1 мин. Определение ЧД производят по спирограмме или по движению грудной клетки. Средняя частота дыхания у здоровых лиц — 16—18 в минуту, у спортсменов — 8—12. В условиях максимальной нагрузки ЧД возрастает до 40—60 в 1 мин.
Глубина дыхания (ДО) — объем воздуха спокойного вдоха или выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, пола и функционального состояния спортсмена. У здоровых лиц ДО составляет 300—800 мл. Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания. В спокойном состоянии воздух в трахее, бронхах, бронхиолах и в неперфузируемых альвеолах в газообмене не участвуют, так как не приходит в соприкосновение с активным легочным кровотоком — это так называемое «мертвое» пространство. Часть дыхательного объема, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом. С физиологической точки зрения альвеолярная вентиляция — наиболее существенная часть наружного дыхания, так как она является тем объемом вдыхаемого за 1 мин воздуха, который обменивается газами с кровью легочных капилляров. МОД измеряется произведением ЧД на ДО. У здоровых лиц ЧД — 16—18 в минуту, а ДО колеблется в пределах 350—750 мл, у спортсменов ЧД — 8—12 мл, а ДО — 900—1300 мл. Увеличение МОД (гипервентиляция) наблюдается вследствие возбуждения дыхательного центра, затруднения диффузии кислорода и др.

В покое МОД составляет 5—6 л, при напряженной физической нагрузке может возрастать в 20—25 раз и достигать 120— 150 л в 1 мин и более. Увеличение МОД находится в прямой зависимости от мощности выполняемой работы, но только до определенного момента, после которого рост нагрузки уже не сопровождается увеличением МОД. Даже при самой тяжелой нагрузке МОД никогда не превышает 70—80% уровня максимальной вентиляции. Расчет должной величины МОД основан на том, что у здоровых лиц из каждого литра провентилированного воздуха поглощается примерно 40 мл кислорода (это так называемый коэффициент использования кислорода — КИ). Его можно рассчитать по формуле:должное потребление кислорода / 40, а должную величину поглощения кислорода рассчитывают по формуле: должный основной обмен (в ккал) / 7,07 где должный основной определяют по таблицам Гаррис-Бенедикта; 7,07 — число, полученное при умножении калорийной ценности 1 л кислорода (4,91 ккал) на число минут в сутках (1440 мин) и деленное на 1000.

Читайте также:  Вытяжка mbs gartenzia 160 glass white

Вентиляционным эквивалентом (ВЭ) называются соотношение между МОД и величиной потребления кислорода. В состоянии покоя 1 л кислорода в легких поглощается из 20—25 л воздуха. При тяжелой физической нагрузке вентиляционный эквивалент увеличивается и достигает 30—35 л. Под влиянием тренировки на выносливость вентиляционный эквивалент при стандартной нагрузке уменьшается. Это свидетельствует о более экономном дыхании у тренированных лиц.

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) состоит из дыхательного объема легких, резервного объема вдоха и резервного объема выдоха. ЖЕЛ зависит от пола, возраста, размера тела и тренированности. ЖЕЛ составляет в среднем у женщин 2,5—4 л, а у мужчин — 3,5—5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л.
Абсолютные значения ЖЕЛ мало показательны из-за индивидуальных колебаний. При оценке состояния обследуемого рекомендуется рассчитывать «должные» величины.

Для расчета ЖЕЛ обычно используют формулу Anthony и Vernath (1961), в основу которой положена величина основного обмена (ккал/24 ч). Ее находят по таблицам Гаррис-Бенедикта соответственно полу, возрасту и массе тела. ДЖЕЛ = величина основного обмена (ккал) х к, где к — коэффициент: 2,3 у женщин, 2,6 — у мужчин. Величину основного обмена (ккал) определяем по таблицам Гаррис-Бенедикта, где находят фактор роста (Б) и фактор веса (А). Сумма А + Б и есть должная величина основного обмена. Должный основной обмен, как и ЖЕЛ, зависит от пола, возраста, роста и веса, легко определяется по специальным таблицам и выражается в килокалориях. Для выражения отношения в процентах

фактической ЖЕЛ к должной пользуются формулой:
фактическая ЖЕЛ / должная ЖЕЛ х 100
ЖЕЛ считается нормальной, если составляет 100% должной величины. Для оценки ДЖЕЛ можно пользоваться номограммой (рис.4, 5). ЖЕЛ выражается в процентах к ДЖЕЛ.

Общая емкость легких (ОЕЛ) представляет собой сумму ЖЕЛ и остаточного объема легких, то есть того воздуха, который остается в легких после максимального выдоха и может быть определен только косвенно. У молодых здоровых лиц — 75— 80%. ОЕЛ занимает ЖЕЛ, а остальное приходится на остаточный объем. У спортсменов доля ЖЕЛ в структуре ОЕЛ увеличивается, что благоприятно отражается на эффективности вентиляции.

Максимальная вентиляция легких

Максимальная вентиляция легких (МВЛ) — это предельно возможное количество воздуха, которое может быть провентилировано через легкие в единицу времени.
Обычно форсированное дыхание проводится в течение 15 с и умножается на 4. Это и будет величина МВЛ. Большие колебания МВЛ снижают диагностическую ценность определения абсолютного значения этих величин. Поэтому полученную величину МВЛ приводят к должной. Для определения должной МВЛ пользуются формулой — должная МВЛ = 1/2ЖЕЛ х 35; или с использованием основного обмена по таблице А. Теличинаса (1968); или по номограмме.

Снижение МВЛ происходит вследствие уменьшения объема вентилируемой легочной ткани и снижения бронхиальной проходимости, гиподинамии. У мужчин в возрасте 20—30 лет МВЛ колеблется от 100 до 180 (в среднем 140 л/мин), у женщин — от 70 до 120 л/мин. У высокорослых спортсменов с хорошо развитой дыхательной мускулатурой МВЛ иногда достигает 350 л/мин, у спортсменок — 250 л/мин (W. Hollmann, 1972).
Таким образом МВЛ наиболее точно и полно характеризует функцию внешнего дыхания в сравнении с другими спирографическими показателями

Для оценки бронхиальной проходимости

Для оценки бронхиальной проходимости используют тест ФЖЕЛ (форсированная жизненная емкость легких). Обследуемому предлагают максимально глубоко вдохнуть и быстро выдохнуть. ФЖЕЛ у здоровых лиц ниже ЖЕЛ на 200—300 мл. Тиффно предложил измерять ФЖЕЛ за первую секунду. В норме ФЖЕЛ за секунду составляет не менее 70% ЖЕЛ. Пневмотахометрия проводится пневмотахометром Б.Е. Вотчала. Методом пневмотахометрии определяют скорость воздушной струи при максимально быстром вдохе и выдохе. У здоровых лиц этот показатель колеблется у мужчин от 5 до 8 л/с, у женщин — от 4 до 6 л/с. Отмечена зависимость пневмотахометрического показателя от ЖЕЛ и возраста. Обнаружено, что чем больше ЖЕЛ, тем выше максимальная скорость выдоха. Пневмотахометрический показатель зависит от бронхиальной проходимости, силы дыхательной мускулатуры спортсмена, его возраста, пола и функционального состояния. Величину максимальной скорости выдоха сравнивают с должными величинами, рассчитанными по формуле: должная величина выдоха = ЖЕЛ х 1,2. Разница фактической и должной величин у здоровых людей не должна быть более 15% от должного уровня. У здоровых лиц показатель выдоха больше вдоха. С повышением тренированности отмечается преобладание максимальной скорости вдоха над выдохом. Увеличение скорости вдоха у спортсменов объясняется повышением резервных возможностей легких. Объем воздуха, остающегося в легких после максимального выдоха (ОО) наиболее полно и точно характеризует газообмен в легких. Одним из основных показателей внешнего дыхания является газообмен (анализ респираторных газов — углекислоты и кислорода в альвеолярном воздухе), то есть поглощение кислорода и выведение углекислоты. Газообмен характеризует внешнее дыхание на этапе «альвеолярный воздух — кровь легочных капилляров». Он исследуется методом газовой хроматографии.

Функциональная проба Розенталя поволяет судить о функциональных возможностях дыхательной мускулатуры. Проба проводится на спирометре, где у обследуемого 4—5 раз подряд с интервалом в 10—15 с определяют ЖЕЛ. В норме получают одинаковые показатели. Снижение ЖЕЛ на протяжении исследования указывает на утомляемость дыхательных мышц. Пневмотонометрический показатель (ПТП, мм рт. ст.) дает возможность оценить силу дыхательной мускулатуры, которая является основой процесса вентиляции. ПТП снижается при гиподинамии, при длительных перерывах в тренировках, при переутомлении и др. Исследование проводится пневмотонометром В.И. Дубровского и И.И. Дерябина (1972). Исследуемый производит выдох (или вдох) в мундштук аппарата. В норме у здоровых лиц ПТП в среднем составляет у мужчин на выдохе 328(17,4 мм рт. ст., на вдохе — 227 ± 4,1 ммрт. ст., у женщин, соответственно, — 246 ± 1,8 и 200 ±7,0 мм рт. ст. При заболеваниях легких, гиподинамии, переутомлении эти показатели снижаются.
При физических нагрузках, особенно в циклических видах спорта (лыжные гонки, марафонский бег, гребля академическая и др.), дыхательная мускулатура является лимитирующим фактором. На рис.7 показана функция легких в состоянии покоя и мышечной нагрузки.

Общая емкость легких во время нагрузки может несколько уменьшаться из-за увеличения внутриторакального объема крови. В состоянии покоя дыхательный объем (ДО) составляет 10-15% ЖЕЛ (450-600 мл), при физической нагрузке может достигать 50% ЖЕЛ. Таким образом, у людей с большой ЖЕЛ дыхательный объем в условиях интенсивной физической работы может составлять 3—4 л. Как видно на рис. 49, ДО увеличивается главным образом за счет резервного объема вдоха. Резервный объем выдоха даже при тяжелой физической нагрузке изменяется незначительно. Поскольку во время физической работы остаточный объем увеличивается, а функциональная остаточная емкость практически не изменяется, ЖЕЛ несколько уменьшается. Пробы Штанге и Генчи дают некоторое представление о способности организма противостоять недостатку кислорода.

Проба Штанге

Измеряется максимальное время задержки дыхания после глубокого вдоха. При этом рот должен быть закрыт и нос зажат пальцами. Здоровые люди задерживают дыхание в среднем на 40—50 с; спортсмены высокой квалификации — до 5 мин, а спортсменки — от 1,5 до 2,5 мин. С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается (с учетом других показателей), как улучшение подготовленности (тренированности) спортсмена.

Проба Генчи

После неглубокого вдоха сделать выдох и задержать дыхание. У здоровых людей время задержки дыхания составляет 25—30 с. Спортсмены способны задержать дыхание на 60—90 с. При хроническом утомлении время задержки дыхания резко уменьшается. Значение проб Штанге и Генчи увеличивается, если вести наблюдения постоянно, в динамике.

Источник

Adblock
detector