Меню

Скорость воздушного потока при вытяжке



Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты

Selection of the Air Speed in the Ducts of Ventilation, Air Conditioning, Aspiration and Smoke Protection Systems

V. N. Bolomatov, Engineer, Honorary Builder of the Russian Federation

Keywords:air duct, air speed, aerodynamic noise, aerodynamic calculation

The ventilation network is the main part of any ventilation, air conditioning and aspiration system and includes air ducts, fittings and network equipment. There are no regulatory documents for determining the optimal air speed in air ducts, since the range of speed selection is wide and depends on many individual factors of the network, including: the category of the building, the purpose of the room, the material and shape of the duct, the presence of insulation in the network, shaped elements, throttling and adjusting devices and many other conditions. To increase the efficiency and quality of the design work performed, it is necessary to expand the search for an algorithm for choosing the optimal air velocity in air ducts for the main types of buildings and premises and to develop standard solutions for practical use.

Вентиляционная сеть является основной частью любой системы вентиляции, кондиционирования воздуха и аспирации и включает воздуховоды, фасонные элементы и сетевое оборудование. Нормативных документов по определению оптимальной скорости воздуха в воздуховодах нет, т. к. диапазон выбора скоростей находится в широких пределах и зависит от многих индивидуальных факторов сети, в том числе: категории здания, назначения помещения, материала и формы воздуховода, наличия в сети изоляции, фасонных элементов, дроссельных и регулировочных устройств и многих других условий.

Для повышения оперативности и качества выполняемых проектных работ необходимо расширить поиски алгоритма выбора оптимальных скоростей движения воздуха в воздуховодах для основных видов зданий и помещений и разработать стандартные решения для практического применения.

Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты

В. Н. Боломатов, инженер, Почетный строитель РФ

Вентиляционная сеть (далее воздуховод) является основной частью любой системы вентиляции, кондиционирования воздуха и аспирации и включает воздуховоды, фасонные элементы и сетевое оборудование. Нормативных документов по определению оптимальной скорости воздуха в воздуховодах нет, т. к. диапазон выбора скоростей находится в широких пределах, от 0,3 до 30,0 м/с, и зависит от многих индивидуальных факторов сети, в т. ч.: категории здания, назначения помещения, материала и формы воздуховода, наличия в сети изоляции, фасонных элементов, дроссельных и регулировочных устройств и многих других условий. В настоящее время источником выбора являются ведомственные рекомендации или справочники, которые разработаны в 1965–1970 годах и в основном для минимальных скоростей, обеспечивающих потери давления в сетях, которые могут быть компенсированы типовыми, относительно дешевыми вентиляторами низкого или среднего давления, и не подтверждены конструктивной и экономической целесообразностью. Кроме того, рекомендуемые низкие скорости «перенасыщают» производственные здания воздуховодами больших размеров или не могут обеспечить приемлемую степень заполнения воздуховодами дорогостоящего объема зданий жилого или общественного назначения. Рассмотрим воздуховоды некоторых систем, наиболее часто встречающиеся в практике проектирования.

Воздуховоды. Общие сведения

Конструирование сети, как правило, начинают с составления аксонометрической схемы системы с обязательным указанием пространственного расположения воздуховодов, длины каждого участка сети при заданных расходах по участкам и выбранной скорости воздуха в воздуховодах, по которым далее определяются сечения воздуховода и потери давления. Скорость следует именно рассчитать, выбрать ту скорость движения воздуха, которая представляется оптимальной для конкретной системы, руководствуясь соображениями конструктивной и экономической целесообразности.

Воздуховоды и фасонные элементы проектируются из унифицированных стандартных деталей [1]. Воздуховоды могут быть прямоугольной или круглой формы и, как правило, изготавливаются из металла. Если применяются воздуховоды или каналы из других материалов, при расчетах необходимо учитывать поправку на эквивалентную шероховатость стенок воздуховода.

Прямоугольные воздуховоды вследствие их низких аэродинамических характеристик, высокой стоимости изготовления и монтажа проектируются при обосновании и применяются при ограниченном пространстве шахт или подшивных потолков в общественных или жилых зданиях. При проектировании нестандартных сечений соотношение сторон для воздуховодов прямоугольных сечений не должно превышать 1:4 [2]. При проектировании системы вентиляции с естественным удалением воздуха воздуховоды выполняют с соотношением сторон не более 1:2.

Круглые воздуховоды более объемны, но имеют лучшие аэродинамические показатели, низкий уровень аэродинамического шума воздушного потока, технологичны при изготовлении и монтаже и широко применяются в строительстве. Для взаимозаменяемости прямоугольных и круглых воздуховодов используют термин эквивалентного диаметра, определяемого по зависимости:

Эквивалентный диаметр прямоугольного воздуховода – это диаметр условного воздуховода, в котором потери давления на трение равны. На практике при конструировании систем вентиляции, кондиционирования и аспирации предпочтение следует отдавать воздуховодам круглого сечения. Аэродинамический расчет системы вентиляции проводят с помощью специализированных программ или таблиц справочных источников [3, 4]. Расчет по методу динамических давлений может выполняться и по диаграммам (рис. 1). Погрешность расчета по диаграммам не превышает 3–5 %, что достаточно для некоторых расчетов. Если перемещается воздух с температурой выше 50 °C, при расчетах необходимо учитывать соответствующую поправку.

Воздуховоды систем с естественным побуждением

При выборе скорости воздуха определяющим является источник побуждения – ветровой или гравитационный.

Для ветровых систем при использовании дефлектора и расчетном напоре 5,0–6,0 Па скорости воздуха, по данным многочисленных источников, в т. ч. [8], принимают в пределах 1,0–1,5 м/с.

Для гравитационных систем при тепловом перепаде Δt = 5 °C и располагаемом давлении 3,0–4,0 Па скорости воздуха, по данным разнообразных справочников, в т. ч. [9], принимают в пределах 0,5–1,5 м/с. В магистральных вытяжных шахтах зданий от четырех до 12 этажей оптимальная скорость при расчетном напоре более 6,0 Па может достигать 2,0 м/с. Диапазон скоростей для отдельных участков рекомендуется принимать по табл. 1.

Для зданий высотой более 12 этажей или при расчетном тепловом перепаде более Δt = 6 °C следует проводить расширенный расчет.

Читайте также:  Клапан вентиляции картера назначение

Системы с механическим побуждением. Общие сведения

При разработке вентиляционных систем с механическим побуждением используют метод допустимых скоростей или метод динамических давлений. При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают расчетную оптимальную скорость воздуха. Далее определяют сечение участков (диаметр или размер сторон) и потери давления в вентиляционной сети. Метод применяется на стадии создания рабочих чертежей. При конструировании сети воздуховодов по методу динамических давлений за исходные данные принимают потери давления в вентиляционной сети. Далее устанавливают скорость воздуха и принимают сечение участков. Метод предполагает постоянную потерю напора на погонный метр воздуховода, на основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост, является ориентировочным расчетом и применяется при разработке схем на стадии проекта или технико-экономического обоснования.

Воздуховоды систем жилых и общественных зданий

При выборе скорости воздуха в воздуховодах определяющей становится величина скорости, которая принимается исходя из акустических ограничений. При расчете уровней шума систем вентиляции, кондиционирования воздуха и воздушного отопления в помещении учитывается не только шум от скорости движения воздуха в воздуховодах, но и возможное снижение уровня звуковой мощности в элементах сети. Скорость воздуха в воздуховодах – основная причина аэродинамического шума, возникающего на линейных участках, ответвлениях, регулирующих устройствах и других компонентах систем. Уровень аэродинамического шума в воздуховоде пропорционально зависит от скорости воздуха и вычисляется по формуле:

где Lw – уровень звуковой мощности, дБ;

v – скорость воздуха, м/с;

A – площадь поперечного сечения воздуховода, м 2 .

Техническая задача проектировщика – выбрать скорость в воздуховодах таким образом, чтобы соблюдались как оптимальные скорости, так и предельно допустимые уровни шума для соответствующих помещений, т. е. найти компромисс между уровнем шума и скоростью воздуха в воздуховоде. Диапазон скоростей с допустимым уровнем шума в помещениях находится в пределах 3–5 м/с, в воздуховодах шахт и технических помещений – 6–9 м/с. В табл. 2 приведены скорости движения воздуха в воздуховодах с учетом особенностей установки и назначения помещения. В качестве справочного источника по акустическому расчету систем вентиляции жилых и общественных зданий используется [4]. Расчет воздуховодов и выбор скорости воздуха в воздуховодах систем жилых зданий рекомендуется выполнять по [5].

В статье А. Л. Наумова, О. С. Судьиной «Оптимизация проектирования и энергоэффективность трубопроводных сетей инженерных систем здания» (АВОК, № 4, 2009) рассматривалась проблема выбора оптимальных скоростей движения рабочей среды в трубопроводных сетях с учетом экономической целесообразности. Авторы статьи отмечали, что «Стремясь минимизировать затраты на трубопроводы и сетевые элементы, а также сэкономить полезный объем здания, проектировщики, как правило, принимают рабочие скорости среды, близкие к максимально допустимым, производительность насосов и вентиляторов с хорошим запасом. А запас этот действительно необходим, так как прямые линии трассировок в проекте трансформируются в причудливые «загогулины», обходящие выступы, балки, колонны при реальном монтаже.

Нередко возникает необходимость из-за высоких скоростей воздуха в системах вентиляции устанавливать дополнительные шумоглушители, тем самым увеличивая еще больше аэродинамическое сопротивление сети».

В статье проанализировано изменение энергетических и экономических показателей трубопроводной сети при изменении средней скорости движения рабочей среды и показано, что экономически оптимальная скорость движения рабочей среды соответствует минимально допустимым скоростям. А учитывая, что до 80 % электроэнергии в системах жизнеобеспечения зданий приходится на привод насосов и вентиляторов, оптимизация гидравлических и аэродинамических режимов работы инженерных систем позволит радикально снизить энергоемкость зданий при сравнительно небольших затратах.

Воздуховоды систем складов и производственных зданий

Для современных складов и цехов принято проектировать системы с механическим побуждением. Вентиляционное оборудование и воздуховоды складов и производственных зданий, как правило, размещаются в пределах объема здания или на прилегающих территориях, причем скорость движения воздуха в воздуховодах ничем не ограничивается, кроме конструктивной и экономической целесообразности. При проектировании приточных и вытяжных систем складов и цехов целесообразно указывать в техническом задании диапазон скоростей движения воздуха в воздуховодах, в т. ч. и помещений, где шум вентиляционной установки не должен усиливать уровень общего производственного шума. Рекомендованная скорость движения воздуха для различных помещений складов и производственных зданий приведена в табл. 3.

Воздуховоды местных систем и аспирации

При расчете воздуховодов вентиляционных систем используют метод допустимых скоростей или метод динамических (скоростных) давлений. Метод динамических давлений принимается, если концентрация пыли превышает 0,01 кг/кг. При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха. Сети местных систем и аспирации, как правило, короткие, местных сопротивлений немного, целесообразно применять более высокие скорости, чтобы сократить расход металла на вентиляцию и не «перенасыщать» интерьер цеха воздуховодами больших размеров. Кроме того, в местных системах и системах аспирации скорость на участках не может быть меньше скорости «витания» транспортируемого материала, во избежание выпадения переносимой воздушным потоком примеси в воздуховодах. При расчетах необходимо обеспечить нарастание скорости движения воздуха от воздуховода местного отсоса до выброса. Невыполнение этих требований создаст условия для накопления пыли в отдельных участках сети и как следствие – для взрыва или пожара. Скорость движения воздуха в воздуховодах находится в диапазоне 15–30 м/с. Расчет воздуховодов для некоторых местных систем выполняется по [6], систем аспирации по [7] или другим ведомственным справочным источникам по проектированию вентиляции производственных зданий. Рекомендованные скорости движения воздуха в воздуховодах для различных участков и видов транспортируемый пыли приведены в табл. 4.

Воздуховоды систем противодымной вентиляции

Скорости движения воздуха в воздуховодах систем подпора или дымоудаления находятся в диапазоне 15–25 м/с. Следует отметить, что при расчетах систем дымоудаления вместо скорости воздуха используется массовая скорость смеси дыма и воздуха, которая существенно ниже вследствие значительной разности плотности воздуха при температуре помещения и дымовых газов по участкам сети. Рекомендованные массовые скорости дымовых газов для различных воздуховодов при температуре дымовых газов 300 °C приведены в табл. 5. Расчет воздуховодов систем дымоудаления выполняется по [10]. В качестве справочного источника используется [11].

Вывод

Для повышения оперативности и качества выполняемых проектных работ необходимо расширить поиски алгоритма выбора оптимальных скоростей движения воздуха в воздуховодах для основных видов зданий и помещений и разработать стандартные решения для практического применения.

Литература

1. ВСН 353-86. Проектирование и применение воздуховодов из унифицированных деталей. – 1986.

2. СП 60.13330.2016. Отопление, вентиляция и кондиционирование воздуха.

3. Идельчик И. Е. Справочник по гидравлическим сопротивлениям. – М.: Машиностроение, 1992.

4. СП 271.1325800.2016. Системы шумоглушения воздушного отопления, вентиляции и кондиционирования воздуха. Правила проектирования.

5. СТО СРО НП СПАС-05-2013. Расчет и проектирование систем вентиляции жилых многоквартирных зданий.

6. Рысин С. А. Вентиляционные установки машиностроительных заводов. Справочник. Изд. 3-е, перераб. – М.: Машиностроение, 1964.

7. Рекомендации по проектированию систем аспирации.

10. СП 7.13130.2013. Отопление, вентиляция и кондиционирование. Требования пожарной безопасности.

11. МДС 41-1.99. Рекомендации по противодымной защите при пожаре.

Источник

Скорость воздуха в воздуховоде: нормы потока в вентиляции

Микроклимат, обеспеченный системами вентиляции в жилом или производственном помещении, влияет на самочувствие и работоспособность людей. Для создания комфортных условий жизнедеятельности разработаны нормы, определяющие состав воздуха.

Постараемся разобраться, какой должна быть скорость воздуха в воздуховоде, чтобы он всегда оставался свежим и отвечал гигиеническим нормам.

  • Важность воздухообмена для человека
  • Правила определения скорости воздуха
    • №1 — санитарные нормы уровня шума
    • №2 — уровень вибрации
    • №3 — кратность воздухообмена
  • Алгоритм вычисления скорости воздуха
  • Рекомендованные нормы скорости воздухообмена
  • Тонкости выбора воздуховода
  • Выводы и полезное видео по теме

Важность воздухообмена для человека

По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.

Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.

Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.

В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.

Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.

Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.

При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:

  • каждое помещение нужно обеспечить системой вентиляции;
  • необходимо соблюдать гигиенические параметры воздуха;
  • на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
  • в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.

Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.

Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.

От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации.

Правила определения скорости воздуха

Скорость движения воздуха тесно взаимосвязана с такими понятиями, как уровень шума и уровень вибрации в вентиляционной системе. Проходящий по каналам воздух создает определенный шум и давление, которые возрастают с увеличением количества поворотов и изгибов.

Чем больше сопротивление в трубах, тем ниже скорость воздуха и тем выше производительность вентилятора. Рассмотрим нормы сопутствующих факторов.

№1 — санитарные нормы уровня шума

Нормативы, указанные в СНиП, касаются помещений жилого (частных и многоквартирных домов), общественного и производственного типа.

В таблице, представленной ниже, вы можете сравнить нормы для помещений различного типа, а также территорий, прилегающих к зданиям.

Одной из причин увеличения принятых норм как раз может быть неправильно спроектированная система воздуховодов.

Уровни звукового давления представлены в другой таблице:

№2 — уровень вибрации

Мощность работы вентиляторов напрямую связана с уровнем вибрации. Максимальный порог вибрации зависит от нескольких факторов:

  • размеров воздуховода;
  • качества прокладок, обеспечивающих снижение уровня вибрации;
  • материала изготовления труб;
  • скорости потока воздуха, проходящего по каналам.

Нормы, которых стоит придерживаться при выборе вентиляционных устройств и при расчетах, касающихся воздуховодов, представлены в следующей таблице:

Скорость воздуха в шахтах и каналах не должна влиять на увеличение показателей вибрации, как и на связанные с ними параметры звуковых колебаний.

№3 — кратность воздухообмена

Очистка воздуха происходит благодаря процессу воздухообмена, который подразделяется на естественный или принудительный.

В первом случае он осуществляется при открывании дверей, фрамуг, форточек, окон (и называется аэрацией) или просто путем инфильтрации через щели на стыках стен, дверей и окон, во втором – с помощью кондиционеров и вентиляционного оборудования.

Смена воздуха в комнате, подсобном помещении или цеху должна происходить несколько раз в час, чтобы степень загрязнения воздушных масс была допустимой.

Количество смен – это кратность, величина, также необходимая для определения скорости воздуха в вентканалах.

Кратность вычисляют по следующей формуле:

  • N – кратность воздухообмена, раз в 1 час;
  • V – объем чистого воздуха, заполняющего помещение за 1 ч, м³/ч;
  • W – объем помещения, м³.

Чтобы не выполнять дополнительные расчеты, средние показатели кратности собраны в таблицы.

Например, для жилых помещений подходит следующая таблица кратности воздухообмена:

Что случится, если нормативы кратности воздухообмена не будут соблюдаться или будут, но в недостаточной степени?

Произойдет одно из двух:

  • Кратность ниже нормы. Свежий воздух прекращает замещать загрязненный, вследствие чего в помещении увеличивается концентрация вредных веществ: бактерий, болезнетворных микроорганизмов, опасных газов. Количество кислорода, важного для дыхательной системы человека, уменьшается, а углекислого газа, напротив, увеличивается. Влажность повышается до максимума, что чревато появлением плесени.
  • Кратность выше нормы. Возникает, если скорость перемещения воздуха в каналах превышает норму. Это негативно влияет на температурный режим: помещение просто не успевает нагреваться. Излишне сухой воздух провоцирует болезни кожи и дыхательного аппарата.

Чтобы кратность обмена воздуха соответствовала санитарным нормам, следует установить, убрать или отрегулировать вентиляционные приборы, а при необходимости и заменить воздуховоды.

Алгоритм вычисления скорости воздуха

Учитывая вышеизложенные условия и технические параметры конкретно взятого помещения, можно определить характеристики вентиляционной системы, а также рассчитать скорость воздуха в трубах.

Опираться следует на кратность воздухообмена, которая для данных расчетов является определяющим значением.

Для уточнения параметров расхода пригодится таблица:

Чтобы самостоятельно произвести расчеты, нужно знать объем помещения и норму кратности воздухообмена для комнаты или зала заданного типа.

Например, необходимо узнать параметры для студии с кухней общим объемом 20 м³. Возьмем минимальное значение кратности для кухни – 6. Получается, что в течение 1 часа воздушные каналы должны переместить около L = 20 м³*6 =120 м³.

Также необходимо узнать площадь сечения воздуховодов, установленных в систему вентиляции. Она вычисляется по следующей формуле:

S = πr 2 = π/4*D 2

  • S — площадь сечения воздуховода;
  • π — число «пи», математическая константа, равная 3,14;
  • r — радиус сечения воздуховода;
  • D — диаметр сечения воздуховода.

Предположим, что диаметр воздуховода круглой формы равен 400 мм, подставляем его в формулу и получаем:

S = (3,14*0,4²)/4 = 0,1256 м²

Зная площадь сечения и расход, можем вычислить скорость. Формула расчета скорости воздушного потока:

V = L/3600*S

  • V — скорость воздушного потока, (м/с);
  • L — расход воздуха, (м³/ч);
  • S — площадь сечения воздушных каналов (воздуховодов), (м²).

Подставляем известные значения, получаем: V = 120/(3600*0,1256) = 0,265 м/с

Следовательно, чтобы обеспечить необходимую кратность воздухообмена (120 м 3 /ч) при использовании круглого воздуховода с диаметром 400 мм, потребуется установить оборудование, позволяющее увеличить скорость воздушного потока до 0,265 м/с.

Следует помнить, что описанные ранее факторы – параметры уровня вибрации и уровня шума – напрямую зависят от скорости движения воздуха.

Если шум будет превышать показатели нормы, придется снижать скорость, следовательно, увеличивать сечение воздуховодов. В некоторых случаях достаточно установить трубы из другого материала или заменить изогнутый фрагмент канала на прямой.

Рекомендованные нормы скорости воздухообмена

Во время составления проекта здания выполняют расчет каждого отдельного участка. На производстве это цеха, в жилых домах – квартиры, в частном доме – поэтажные блоки или отдельные комнаты.

Перед установкой системы вентиляции известно, каковы маршруты и размеры главных магистралей, какой геометрии необходимы вентиляционные каналы, какой размер труб является оптимальным.

Расчеты, связанные с передвижением воздушных потоков внутри жилых и производственных зданий, относят к разряду наиболее сложных, поэтому заниматься ими обязаны опытные квалифицированные специалисты.

Рекомендованная скорость воздуха в воздуховодах обозначена в СНиП — нормативной государственной документации, и при проектировании или сдаче объектов ориентируются именно на нее.

Считается, что внутри помещений скорость воздуха не должна превышать показатель 0,3 м/с.

Исключения составляют временные технические обстоятельства (например, ремонтные работы, установка строительной техники и др.), во время которых параметры могу превышать нормативы максимум на 30 %.

В больших по объему помещениях (гаражах, производственных цехах, складах, ангарах) часто вместо одной вентиляционной системы действуют две.

Нагрузка делится пополам, следовательно, и скорость воздуха подбирают так, чтобы она обеспечивала по 50 % общего расчетного объема перемещения воздуха (удаления загрязненного или подачи чистого).

При возникновении форс-мажорных обстоятельств возникает необходимость в резкой смене скорости воздуха или полной приостановке работы вентиляционной системы.

Например, по требованиям пожарной безопасности скорость движения воздуха снижают до минимума в целях предотвращения распространения по соседним помещениям огня и дыма во время возгорания.

С этой целью в воздуховодах и на переходных участках монтируют отсекатели и клапаны.

Тонкости выбора воздуховода

Зная результаты аэродинамических расчетов, можно правильно подобрать параметры воздуховодов, а точнее – диаметр круглых и габариты прямоугольных сечений.

Кроме того, параллельно можно выбрать прибор принудительной подачи воздуха (вентилятор) и определить потери давления в процессе передвижения воздуха по каналу.

Зная величину расхода воздуха и значение скорости его движения, можно определить, какого сечения воздуховоды потребуются.

Для этого берется формула, обратная формуле для подсчета расхода воздуха: S = L/3600*V.

Используя результат, можно посчитать диаметр:

D = 1000*√(4*S/π)

  • D — диаметр сечения воздуховода;
  • S — площадь сечения воздушных каналов (воздуховодов), (м²);
  • π — число «пи», математическая константа, равная 3,14;.

Полученное число сопоставляют с заводскими стандартами, допущенными по ГОСТ, и выбирают наиболее близкие по диаметру изделия.

Если необходимо выбрать прямоугольные, а не круглые воздуховоды, то следует вместо диаметра определить длину/ширину изделий.

При выборе ориентируются на примерное сечение, используя принцип a*b ≈ S и таблицы типоразмеров, предоставленные заводами-изготовителями. Напоминаем, что по нормам отношение ширины (b) и длины (a) не должно превышать 1 к 3.

Общепринятые стандарты прямоугольных каналов: минимальные размеры – 100 мм х 150 мм, максимальные – 2000 мм х 2000 мм. Круглые воздуховоды хороши тем, что обладают меньшим сопротивлением, соответственно, имеют минимальные показатели уровня шума.

В последнее время специально для внутриквартирного применения выпускают удобные, безопасные и легкие пластиковые короба.

Выводы и полезное видео по теме

Полезные видеоролики научат вас работать с физическими величинами и помогут лучше представить, как действует вентиляционная система.

Расчет параметров естественной вентиляции с помощью компьютерной программы:

Полезная информация об устройстве вентиляционной системы в строящемся частном доме:

Информацию статьи можно использовать в ознакомительных целях и для того, чтобы лучше представить себе работу вентиляционной системы. Для более точных расчетов скорости движения воздуха при проектировании домашних коммуникаций рекомендуем обратиться к инженерам, которые знают нюансы устройства вентиляции и помогут правильно выбрать размеры воздуховодов.

Источник

Вентилиция и кондиционирование © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

ОТ РЕДАКЦИИ