Меню

Соотношение вентиляция кровоток в легких



Соотношение вентиляция кровоток в легких

Для нормального процесса обмена газов в легочных альвеолах необходимо, чтобы их вентиляция воздухом находилась в определенном соотношении с перфузией их капилляров кровью (рис. 10.20). Иными словами, минутному объему дыхания должен соответствовать минутный объем крови, протекающей через сосуды малого круга, а этот объем, естественно, равен объему крови, протекающей через большой круг. В обычных условиях вентиляционно—перфузионный коэффициент у человека составляет 0,8—0,9. Например, при альвеолярной вентиляции, равной 6 л/мин, минутный объем крови может составить около 7 л/мин.

В отдельных областях легких соотношение между вентиляцией и перфузией может быть неравномерным. Резкие изменения этих отношений могут вести к недостаточной артериализации крови, проходящей через капилляры альвеол.

Легочные сосуды относят к «емкостной системе». Их просвет в значительной степени зависит от внутригрудного и внутриальвеолярного давления. В малом круге давление крови низкое, что в нормальных условиях предотвращает выпотевание плазмы через альвеолокапиллярную мембрану и образование отека легких. Ширина сосудистого русла регулируется симпатической иннервацией. Имеются и местные механизмы, сопрягающие перфузию альвеол с их вентиляцией. Так, в тех альвеолах, которые не вентилируются или вентилируются воздухом с пониженным содержанием кислорода, капилляры спазмируются, предотвращая бесполезную перфузию.

Легочный кровоток (рис. 10.21) в целом зависит от величины сердечного выброса, поэтому в конечном счете он управляется общими регуляторными механизмами сердечно—сосудистой системы. Отсюда тесная взаимосвязь между регуляцией дыхания и кровообращения, которая особенно ярко проявляется при мышечной деятельности.

К этому следует добавить, что дыхательные колебания внутригрудного давления, действуя по принципу «двойного насоса», не только обеспечивают вентиляцию легких, но и помогают венозному возврату крови к сердцу. В свою очередь, пульсовые толчки давления в воздухоносных путях и альвеолах, вызванные сокращениями сердца, способствуют внутрилегочному смещению газов, создавая его кардиогенный компонент.

Рис.10.20 Вентиляционно—перфузионное соотношение (1 : 10) в легких человека (А) и жабрах форели (Б)

Рис. 10.21 Распределение кровотока в легких человека в вертикальном положении

В прямоугольниках схематично показано состояние сосудов, проходящих в межальвеолярных перегородках разных отделов легких. pa — альвеолярное давление; Ра — артериальное давление; Рв — венозное давление.

Источник

Соотношение вентиляция кровоток в легких

Эффективность выполнения основной функции дыхательной системы зависит от соответствия перфузии (кровотока) в регионах легких с их вентиляцией. Так, хороший кровоток будет недостаточным для газообмена в регионах легких, если они слабо вентилируются воздухом с низким содержанием кислорода, при этом незначительный объем вентиляции легких не позволит удалить из крови углекислый газ. Соответственно, при слабом кровотоке в регионах легких возрастает объем функционального мертвого пространства, и перфузия легких кровью будет недостаточной для транспорта в ней нормального количества газов. Наконец, перфузия кровью регионов легких с недостаточной вентиляцией этих же отделов называется шунтированием, и это состояние является неадекватным для нормального газообмена. При шунтировании венозная кровь в легких не обогащается кислородом, что снижает его содержание в крови организма. В нормальных физиологических условиях фактор гравитации оказывает наиболее выраженный эффект на вентиляцию и перфузию регионов легких кровью.

Эффект гравитации на вентиляцию и перфузию легких кровью

Легкие окружены плевральным пространством, отрицательное давление в котором изменяется от —5 до —10 см водн. ст. в различные фазы дыхательного цикла. Этот фактор взаимодействует с эффектом гравитации на жидкие среды, прежде всего кровь, содержащуюся в артериальных и венозных сосудах тканей легких. В результате под действием силы тяжести на ткань легких величина внутриплеврального давления на уровне основания легких у человека в положении стоя менее отрицательная относительно атмосферного, чем в области верхушек легкого. Поэтому альвеолы верхушек легких имеют большие размеры, а стенка их растянута и более напряжена, чем у альвеол нижних участков легких. Альвеолы на уровне основания легких растянуты в незначительной степени и имеют значительно больше потенциальные возможности для растягивания и вентиляции, чем в области верхушек. Поэтому растянутые альвеолы верхушки легких вентилируются меньше, чем альвеолы основания (рис. 10.13). Эти различия в вентиляции отделов легких приводят к тому, что вдыхаемый воздух неравномерно распределяется в отделах альвеолярного пространства. Особенности распределения воздуха, вдыхаемого в легкие, дополняется разницей в величине кровотока на уровне верхушек и основания легких. Относительно положения тела в пространстве кровоток в верхних и нижних отделах легкого различается под влиянием фактора гравитации.

У человека в вертикальном положении тела величина легочного кровотока на единицу объема ткани легкого линейно убывает в направлении снизу вверх, и меньше всего снабжаются кровью верхушки легких. Соответственно в положении тела человека на спине кровоток в нижних (дорсальных) отделах легких становится выше, чем в верхних (вентральных). Это обусловлено тем, что артериальная кровь, поступающая в легкие из правого желудочка, проходит по сосудам легких из областей низкого внутриплеврального давления в области тонкостенных капилляров, которые окружены альвеолами, содержащими воздух под давлением, близким к атмосферному. Поэтому в зависимости от соотношения давления в альвеолах (РА), мелких артериях (Ра) и мелких легочных венах (Pv) легкие разделены на функциональные зоны Веста (рис. 10.14).

Читайте также:  Замена вентилятора печки приора без кондиционера инструкция

Рис. 10.13. Влияние внутриплеврального давления и фактора гравитации на размеры альвеол верхних и нижних отделов легких. Между верхушками и основанием легких имеется градиент внутриплеврального давления, возникающий под влиянием гравитации на массу жидких сред и ткань легких. В результате размеры альвеол в верхушках легких больше, чем в основании (А). Альвеолы в нижних отделах легких имеют большие потенциальные возможности для увеличения в них вентиляции легких при вдохе, чем альвеолы в области верхних отделов легких (Б).

В верхушках легких (зона 1) могут возникнуть области с давлением в легочных капиллярах (особенно в фазу диастолы) ниже альвеолярного (Ра > Ра > Pv)- Капилляры в таких зонах могут спадаться, и кровоток через них становится невозможным. Такие участки легких вентилируются, но не участвуют в газообмене и формируют альвеолярное мертвое пространство.

В средних отделах легких (зона 2) под действием гравитации давление в альвеолах, как правило, превышает венозное (Ра > РА > Pv). Поэтому величину кровотока в зоне 2 по Весту определяет разность между артериальным и альвеолярным давлениями. В зоне 2 практически не возникает альвеолярное мертвое пространство.

В нижних отделах легких (зона 3) давление в легочных венах выше альвеолярного (Ра > Pv > Ра) и величина кровотока, как и в обычных сосудах, определяется разницей между артериальным и венозным давлениями.

Величина зон Веста динамично изменяется в зависимости от положения тела в пространстве или глубины дыхания. При выдохе на уровне функциональной остаточной емкости примерно 2/з объема легких может занимать зона 2. После глубокой экспирации (на уровне остаточного объема) большая часть легких по соотношению перфузии кровью и вентиляции соответствует зоне 3 Веста. Относительная однонаправленность изменения градиента внутриплеврального давления и влияния гравитации на кровоток в легких от верхних отделов легких к нижним теме не менее не сопряжены в каждом отдельном регионе легких.

Источник

Соотношение вентиляции и перфузии легких

Пло­щадь и толщина альвеоло-капиллярного барьера

Количество альве­ол в одном легком человека равно приблизительно 300 млн.
Сум­марная площадь альвеоло-капиллярного барьера, через который про­исходит обмен газами между альвеолярным воздухом и смешанной венозной кровью, имеет огромные размеры (70-80 м 2 ).

Это дости­гается за счет большой суммарной площади альвеол и необычайной плотности расположения легочных капилляров, сеть которых обра­зует как бы почти сплошной слой крови на поверхности альвеол. Этот слой является столь тонким, что объем крови в легочных капиллярах, несмотря на значительную его поверхность, составляет всего 100-150 мл из общего количества 500-600 мл крови, одновре­менно содержащейся в малом круге кровообращения.

Большая пло­щадь альвеоло-капиллярного барьера и его минимальная толщина (от 0.3 до 2.0 мкм) создают оптимальные условия для диффузии кислорода из альвеолярного воздуха в кровь легочных капилляров, а углекислого газа — в противоположном направлении.

Средняя про­должительность пребывания эритроцитов в легочных капиллярах со­ставляет, в зависимости от скорости легочного кровотока, 0.25-0.75 с, что достаточно для того, чтобы оксигенация крови практически успела закончиться даже при поступлении к легким венозной крови с очень низким содержанием кислорода.

Для полного насыщения крови кислородом в легочных капиллярах необходимо, чтобы кровоток во всех участках легких оптимально соответствовал вентиляции этих участков. Однако, распределение кровотока по легким у человека, как оказалось, не является равномерным, и кровоснабжение разных участком легких зависит от по­ложения тела человека, изменяясь под влиянием гравитационного фактора.

Зависомость легочного кровотока от положения тела

У человека в вертикальном положении величина легочного кровотока на единицу объема ткани легкого почти линейно убывает в направлении снизу вверх, и меньше всего снабжаются кровью верхушки легких.
В положении лежа на спине кровоток в верхушках легких увеличивается, а в основаниях — практически не изменяется, в результате чего, его вертикальная неравномерность распределения почти исчезает. Однако, в этом положении кровоток в задних (до­рсальных) отделах легких становится выше, чем в передних (вен­тральных).

При положении человека вниз головой кровоток в вер­ хушках легких может быть больше, чем в основаниях. При умерен­ной физической нагрузке кровоток в верхних и нижних отделах легких увеличивается и регионарные различия его распределения сглаживаются.

Выраженные гравитационные влияния при вертикальном положе­нии тела на распределение кровотока по легким связаны у человека с низким уровнем внутрисосудистого давления крови в малом круге кровообращения. Среднее давление в легочной артерии человека на уровне сердца около 1.5-2.0 кПа (15-20 см вод.ст.). В артериальных сосудах верхних отделов легких оно снижено на величину гидроста­тического давления столба крови, равного расстоянию по вертикали между этими отделами и уровнем сердца.

функциональные зоны легких

На рис.8.5 схематически представлено подразделение легких на функциональные зоны Веста в зависимости от соотношения в них давления в альвеолах (РА), мелких артериях (Ра) и мелких легочных венах (Pv).

Рис.8.5. Модель, связывающая неравномерность распределения легочного кровотока при вертикальном положении тела человека с величиной давления, действующего на капилляры.

В зоне 1 (верхушка) альвеолярное давление (Рд) превышает давление в артериолах (Pa ) и кровоток ограничен.

Читайте также:  Вытяжка из золы для замачивания семян

В зоне 2, где Ра>Рд, кровоток больше, чем в зоне 1.

В зоне 3 кровоток усилен и определяется разностью давления в артериолах (Р ) и давления в венулах (РV).
В центре вхемы легкого — легочные капилляры; вертикальные трубочки по сторонам легкого — манометры.

В верхушках легких (зона 1) могут существовать области с давлением в легочных артериях (особенно в фазу диастолы) ниже альвеолярного (PA>Pa>Pv). При этом капилляры полностью спадают­ся, и кровоток через них становится невозможным. Такая ситуация в норме не наблюдается, поскольку давление в легочных артериях достаточно, чтобы «поднять» кровь до верхушек, однако, она может возникнуть в результате снижения артериального давления (напри­мер, при значительной кровопотере) или увеличении альвеолярного давления (при искусственной вентиляции под положительным дав­лением). Вентилируемые, но не снабжаемые кровью, т.е. не уча­ствующие в газообмене, участки легких называют альвеолярным мертвым пространством.

В средней части легких (в зоне 2) давление в артериях под действием гидростатических сил увеличивается и становится выше альвеолярного (Pa>PA>Pv). Альвеолярное давление все еще превышает венозное, поэтому величину кровотока определяет раз­ность между артериальным и альвеолярным давлением, а не артерио-венозный градиент давлений. Поскольку альвеолярное давление во всех отделах легких одинаково, а артериальное давление за счет гидростатической составляющей увеличивается в направлении сверху вниз, кровоток интенсивнее в ниже расположенных и, следователь­но, более растянутых сосудах зоны 2.

В нижних отделах легкого (зона 3) давление в легоч­ных венах выше альвеолярного (РАVа) и величина кровотока, как и в обычных сосудах, определяется разницей между артериаль­ным и венозным давлением. Возрастание кровотока в верхне-ниж­нем направлении в этой зоне обусловлено, главным образом, рас­ширением легочных капилляров. Давление в них соответствует сред­нему между артериальным и венозным и возрастает к основаниям легких, тогда как альвеолярное давление остается постоянным. Это приводит к увеличение просвета капилляров в верхне-нижнем на­правлении. Кроме того, постепенное возрастание кровотока в верх­не-нижнем направлении в зоне 3 может быть частично обусловлено вовлечением новых капилляров.

Зоны Веста это функциональная характеристика легких, отли­чающаяся большой динамичностью. Величина каждой из зон зависит не только от положения тела, но и от степени наполненности легких воздухом. При функциональной остаточной емкости легких распред­еление кровотока таково, что зона 2 занимает две три легких, а при остаточном объеме (после усиленного выдоха) все легкое можно отнести к зоне 3. При малом объеме легких снижается кровоток, преимущественно в области оснований легких, где легочная парен­хима расправлена слабее. Причиной такого снижения является здесь сужение внеальвеолярных сосудов при недостаточном расправлении легких. Эти участки иногда называют зоной 4.

Вертикальное положение тела оказывает влияние на распределе­ние не только легочного кровотока, но и вентиляции. Поскольку у человека в вертикальном положении существует градиент плевраль­ного давления от верхушек к основанию легких, обусловленный собственной массой тканей легкого, а также других органов грудной полости, то альвеолы верхушек имеют большие размеры, а стенка их растянута и более напряжена, чем у альвеол нижних участков легких. Альвеолы с разной степенью растяжения вентилируются неравнозначно. Прирашение объема альвеол при одном и том же сдвиге транспулъмонального давления непропорционально меньше в растянутых альвеолах верхушки легких, чем в альвеолах основания.

Смещая однонаправленно интенсивность кровотока и вентиляции от верхних участком легких к нижним, гравитация, тем не менее, не обеспечивает в каждом из них оптимальное соответствие крово­тока и вентиляции в различных функциональных легочных единицах (адекватности вентиляционно-перфузионных отношений), от кото­рого в конечном итоге зависит эффективность легких как газообменного органа. При положении человека стоя или сидя кровь в капилляры верхушек легких почти не поступает и вентиляционно-перфузионное отношение для верхних отделов легких оказывается существенно увеличенным, несмотря на то, что их вентиляция так­же снижена, но в меньшей степени (табл.8.1). Кровоток, как правило, тем больше, чем ниже расположен участок легкого. В нижних отделах вентиляционно- перфузионное отношение умеренно пониже­но. Однако, такое умеренное снижение этого отношения (до 0.7-0.6) еще не приводит к существенным изменениям в насыщении крови кислородом (см. табл.8.1).

Таблица 8.1. Кровоток, вентиляция и насыщение крови кислородом в разных участках легких у здорового человека в положении сидя.

Вазомоторные и бронхомоторные ответы на изменение газового состава альвеолярного воздуха

Механизмами, корригирующими в легких соответствие локального кровотока объему локальной вентиляции, являются вазомоторные и бронхомоторные ответы на изменение газового состава альвеолярного воздуха, а именно — вазоконстрикция при снижении в альвеолах парциального давления кислорода или при повышении в них парци­ального давления углекислого газа и бронхоконстрикция — в случае снижения альвеолярного парциального давления углекислого газа.

Локальный кровоток и локальная вентиляция являются взаиморегулируемыми параметрами: в гиповентилируемых участках кровоток снижается в результате возникающей в них гипоксической и гипер-капнической вазоконстрикции, а в участках с пониженным (по от­ношению к вентиляции) кровотоком гипокапническая бронхоконстрикция вызывает уменьшение вентиляции. Действующие в этих случаях легочные регуляторные механизмы направлены на поддер­жание адекватных вентиляционно-перфузионных отношений в раз­личных отделах легких, представляя собой ауторегуляцию газообмена в этом органе. Констрикция легочных сосудов проявляется уже при небольшом понижении парциального давления кислорода в альве­олах, например, при вентиляции легких гипоксической газовой сме­сью, содержащей 15- 16% кислорода. Следовательно, указанные ауторегуляторные реакции могут возникать в обычных условиях в тех альвеолах, которые заполняются во время вдоха первыми и получа­ют воздух с низким содержанием кислорода, оставшийся в дыха­тельном мертвом пространстве в конце предыдущего выдоха. Воз­никающая при этом вазоконстрикция ограничивает или даже пре­кращает кровоток в этих альвеолах, который направляется в другие группы альвеол.

Читайте также:  Воздуховод для вытяжки квадратный или круглый

Увеличение бронхотонуса при уменьшении легочного кровотока обусловлено действием на гладкую мускулатуру бронхов, возникающей при этом, гипокапнии. Для возникновения гипокапнической бронхоконстрикции имеет значение рН притекающей к легким крови; сни­жение концентрации водородных ионов в крови усиливает бронхоконстрикторную реакцию на гипокапнию.

Источник

Соотношение между вентиляцией и перфузией легких.

Для газообмена в легких большое значение имеет соотношение между альвеолярной вентиляцией и кровотоком через малый круг кровообращения. Определенному минутному объему дыхания должен соответствовать определенный минутный объем кровотока, или перфузия капилляров альвеол – вентиляционно-перфузионное отношение, или коэффициент. Вернемся к рисунку 6, рассчитаем этот коэффициент, исходя из того, что минутный объем кровотока в малом круге кровообращения (как и в большом) в норме равен 5000мл. Минутная альвеолярная вентиляция составляет 5200мл. При делении 5200 на 5000 получим вентиляционно-перфузионный коэффициент, который в норме не должен быть меньше 0.8 — 0.9.

В отдельных частях легких соотношение между вентиляцией и перфузией неравномерно, что зачастую влияет на локализацию патологического процесса в той или иной доле легкого.

Рисунок 7. Распределение кровотока в различных зонах легкого

Оказывается, 90% капиллярного кровотока легких приходится на зону 2 (рис. 7), остальные 10% распределяются между 1 и 3 зонами. В верхушках легких давление в легочных артериях ниже альвеолярного. При этом возможно спадение капилляров. В норме это случается редко, однако возможно в случае кровопотери или снижении артериального давления. В средней части давление в артериолах выше альвеолярного, а в нижних отделах даже венозное давление выше альвеолярного. Различное давление в сосудистом русле легких обусловлены силами гравитации и изменяется при изменении положения тела, в воде, в состоянии невесомости. Следует иметь в виду, что дыхательные колебания внутригрудного давления, действуя по принципу «двойного насоса», не только обеспечивают вентиляцию легких, но и стимулируют венозный возврат крови к сердцу.

Газообмен и транспорт газов Газовый состав альвеолярного воздуха

Газообмен – это процесс выравнивание парциальных давлений газов в двух средах. Этот процесс осуществляется исключительно пассивным путем, движущей силой является градиент парциальных давлений газов. В организме человека и млекопитающих газообмен протекает в легких и тканях. В легких – это процесс обогащения венозной крови кислородом и удаление углекислого газа, а в тканях процесс переноса кислорода из капиллярной крови в ткани и удаление углекислого газа из тканей в кровь.

Обогащение кислородом венозной крови происходит путем переноса кислорода из альвеолярного воздуха в кровь. Остановимся подробнее на этом понятии, поскольку альвеолярный воздух – это внутренняя газовая среда нашего организма.

Прежде всего, заметим, что правильнее называть альвеолярный воздух альвеолярным газом, потому, что его состав существенно отличается от состава атмосферного воздуха. При спокойном дыхании состав альвеолярного газа мало зависит от фаз вдоха и выдоха, это постоянство состава альвеолярного газа является необходимым условием протекания газообмена. Дело в том, что дыхание – циклический процесс, а кровоток в капиллярах легких – непрерывный. Во время дыхательного цикла наблюдаются короткие периоды остановки дыхания – апноэ (на высоте вдоха и в конце выдоха), при которых вентиляции не происходит, а обмен газами продолжается. Если бы в течение этих периодов ФОЕ не обеспечивала сохранение в альвеолах некоторого количества кислорода, насыщение артериальной крови кислородом снизилось. Воздух, заполняющий мертвое пространство, играет роль буфера, который сглаживает колебания состава альвеолярного газа в ходе дыхательного цикла.

Газообмен это пассивный процесс, который протекает по градиенту давлений, попробуем установить величины этих градиентов. У здоровых людей парциальное давление углекислого газа в альвеолах практически совпадает с его напряжением в крови и составляет около 40 мм рт. ст. Парциальное давление кислорода в альвеолах равно в среднем 100 мм рт. ст. Нормальной величиной вентиляции для отдельного человека является та, которая обеспечивает эти значения. Постоянство состава альвеолярного воздуха поддерживается рефлекторной регуляцией МОД.

Вспомним, что парциальное давление – часть общего давления, приходящееся на отдельный газ (если бы он занимал весь объем смеси). Парциальное давление газа в смеси можно рассчитать по формуле:

Р газа = Р смеси  С (%) / 100%, где С – процентное содержание газа.

Для воздуха: Р атм = 760 мм рт.ст.

С кислорода = 20,9 %

Р кислорода = 159 мм рт.ст.

При изменении атмосферного давления изменяется и парциальное давление газов.

Источник

Adblock
detector