Меню

Срок службы корпусного вентилятора



Ликбез по системам охлаждения. Занятие второе: вентиляторы, технические нюансы

В современных технологиях охлаждения компьютеров вентиляторы играют ведущую роль. Будучи главным компонентом систем принудительного воздушного охлаждения, они находят применение в процессорных кулерах, охлаждающих устройствах для жестких дисков и видеокарт, компьютерных корпусах, блоках питания, периферийной технике и т.д. На нашем первом занятии мы уже проработали большую часть основополагающих моментов, относящихся к вентиляторам, разобрались с их фундаментальными параметрами, характеристиками и эксплуатационными свойствами. Сегодня мы вновь обратимся к этим устройствам, более подробно рассмотрим их с инженерно-технической точки зрения и постараемся не упустить из виду все важнейшие технические нюансы.

Строение и особенности функционирования вентиляторов

Современные вентиляторы постоянного тока строятся на одно- или двухфазовых вентильных двигателях. Собственно, сами эти двигатели можно условно разделить на две основные составляющие: схему управления и индукторную машину. Индукторная машина повсеместно представляет собой связку ротор-статор, где ротором является кольцевой постоянный магнит, а статором — четырехполюсный (гораздо реже — шестиполюсный) индуктор.

Что же касается схемы управления, то она реализуется производителями по-разному. Наиболее распространенный вариант основывается на использовании микросхемы-драйвера с интегрированным датчиком Холла (обычно используются микросхемы Analog Technology ATS276/277 или их клоны), которая осуществляет согласованную коммутацию фаз индуктора, позволяя последнему индуцировать вращающееся магнитное поле в пространстве статор-ротор и привести в движение ротор. Наряду с простыми схемами, в некоторых продвинутых вентиляторах могут применяться гораздо более сложные и многофункциональные микросхемы-драйверы, имеющие на борту тахометрический контроль, цепи защиты питающей сети и детектирования стопора крыльчатки (яркий пример — микросхема Sanyo LB1663). Но пока, к сожалению, подобные схемы управления не получили широкого признания среди производителей и являются скорее исключением, чем правилом.

Итак, с электродвигателем разобрались. Посмотрим теперь механическое обустройство вентилятора, а именно — его подшипники. Как уже было отмечено на предыдущем занятии, вал ротора (крыльчатки) может быть закреплен в корпусе вентилятора тремя способами:

  • подшипником скольжения
  • «комбинированным» подшипником (один подшипник скольжения, другой — качения)
  • двумя подшипниками качения

Начнем с подшипника скольжения. В недалеком прошлом этот подшипник пользовался немалой популярностью у производителей благодаря низкой себестоимости и относительно простой технологии «приготовления» вентиляторов на его основе. Действительно, эту конструкцию вряд ли можно назвать сложной: сам подшипник скольжения представляет собой примитивную бронзовую втулку, стальной вал ротора закрепляется в подшипнике с помощью пластикового стопорного кольца, дополнительно к этому втулка закупоривается двумя резиновыми прокладками (сальниками), нахлобученными на вал с каждого ее торца (сальники служат в качестве препятствия вытеканию смазки из зазора вал-подшипник).

На первый взгляд все выглядит вполне пристойно. Но если внимательно присмотреться к подшипнику скольжения, просто нельзя не заметить несколько серьезных недостатков, принижающих его в наших глазах.

Первый недостаток. Так как между внутренней поверхностью подшипника и валом имеется небольшой зазор, в процессе вращения вал крыльчатки «дребезжит» внутри подшипника (иными словами, наблюдаются биения вала). В результате он оказывает сильное абразивное действие на подшипник: в поперечном сечении отверстие подшипника приобретает форму эллипса вместо окружности (наблюдается так называемая эллипсность подшипника). В итоге вал начинает вращаться неустойчиво, весьма значительно повышается уровень шума (в спектре шума вентилятора появляются резкие импульсные всплески — скрипы, стуки и т.п.), а также увеличивается потребление мощности от питающей сети, что сопровождается ощутимым нагревом вентилятора. В случае дисбаланса крыльчатки все это может привести к быстрому разрушению подшипника и выходу вентилятора из строя.

Второй недостаток. Смазка в зазоре вал-подшипник имеет вредную привычку вытекать (несмотря на сальники и прочие предосторожности) из этого самого зазора. Как результат, трущаяся пара вал-подшипник начинает взаимодействовать «насухо», падает скорость вращения крыльчатки и существенно возрастает уровень шума.

Третий недостаток. Для предотвращения эллипсности подшипника и увеличения срока службы вентилятора зазор вал-подшипник стараются сократить. Однако при недостаточной (или некачественной) смазке внутри подшипника старт двигателя затрудняется, что приводит к росту потребления тока и увеличению рассеиваемой мощности (в запущенных случаях — к стопору крыльчатки и выходу вентилятора из строя). В конечном итоге, срок службы вентилятора никак не увеличивается, а наоборот, только сокращается.

Четвертый недостаток. Вентиляторы на подшипниках скольжения не способны надежно функционировать в условиях высокой температуры окружающей среды. Уже при температурах выше 50-60°C срок службы таких вентиляторов резко сокращается, и на практике не превышает 5 тыс. часов.

Все эти недостатки, сдобренные наплевательским отношением к качеству выпускаемых изделий со стороны некоторых «экономных» производителей, ставят под серьезное сомнение целесообразность применения вентиляторов на подшипниках скольжения в системах охлаждения компьютеров, где в первую очередь важна их надежность, а не солидные с виду технические характеристики. Такие вентиляторы, конечно, очень дешевы, чем обычно и привлекают незадачливых покупателей. Но, как известно, скупой платит дважды (а то и большее число раз). Ведь если речь заходит об отказе вентилятора процессорного кулера, то при определенном стечении обстоятельств пользователю придется приобретать не только новый вентилятор, но и новый процессор.

Теперь обратимся к «комбинированной» конструкции — симбиозу подшипника скольжения и подшипника качения.

Нельзя сказать, что такой «комбо-драйв» решает все проблемы, тем не менее, положительные сдвиги тут все-таки есть.

Во-первых, подшипник скольжения в такой конструкции играет лишь вспомогательную роль (выступает в качестве своеобразного шунта). Основная нагрузка ложится здесь уже на плечи шарикового подшипника. И так как трение качения меньше трения скольжения, старт двигателя облегчается, рассеваемая вентилятором мощность уменьшается.

Во-вторых, комбинированная конструкция менее восприимчива к весовому дисбалансу крыльчатки. Биения вала в значительной мере гасятся подшипником качения, и вероятность возникновения эллипсности втулки или ее механического разрушения сведена к минимуму (конечно, это имеет место только при условии соблюдения строгих технических норм на производстве и тщательном контроле качества готовых изделий).

Наконец, в третьих, «комбинированные» вентиляторы могут более или менее нормально функционировать даже в сложных эксплуатационных условиях (при высоких температурах окружающей среды и повышенной влажности воздуха).

Однако по-прежнему остается нерешенной принципиальная проблема утечки масла из зазора между валом и втулкой, которая может обернуться падением оборотов крыльчатки и повышением уровня шума, производимого вентилятором. В последнее время эту неприятность пытаются замять путем использования вязких или даже консистентных смазок. Но в некоторых изделиях это только усугубляет ситуацию: смазка все равно вытесняется из зазора, или, что еще хуже, загустевает с образованием твердых микрочастиц. В самых запущенных случаях вал просто заклинивает, и вентилятор выходит из строя.

Итак, в плане сегодняшнего занятия осталось рассмотрение еще одной конфигурации — вентилятора на двух подшипниках качения.

По правде говоря, такая конструкция тоже не является панацеей от всех бед, но как бы то ни было, вентиляторы на двух подшипниках качения можно смело зачислить в разряд предпочтительных и наиболее оптимальных решений для процессорных кулеров, блоков питания и компьютерных корпусов.

Читайте также:  Канальный вентилятор 250 кубов в час

Главнейшее преимущество структуры из двух подшипников качения — это высокая надежность и долговечность вентиляторов на их основе. Два шарикоподшипника гармонично дополняют друг друга, обеспечивают легкий старт двигателя и устойчивое вращение крыльчатки. Потребляемая мощность у таких вентиляторов, как правило, ниже, чем у изделий на комбинированном подшипнике или подшипнике скольжения, что существенно облегчает тепловой режим и повышает надежность их функционирования. Ко всему прочему, вентиляторы на двух подшипниках качения нетребовательны к смазке, проблема утечки масла уничтожена в них как класс.

Второе главное преимущество — вентилятор на двух подшипниках качения представляет собой отлично сбалансированную конструкцию. Спиральная пружина, устанавливаемая на валу между первым подшипником и крыльчаткой, в значительной мере нейтрализует возможный дисбаланс ротора, а остаточные биения вала взаимно компенсируют два подшипника качения. Как результат, вентилятор стабильно функционирует практически в любом положении относительно вектора силы тяжести.

Наконец, третье главное преимущество — вентиляторы на двух подшипниках качения способны надежно и долговременно функционировать в условиях очень высоких температур окружающей среды (вплоть до 70-90°C)

Пожалуй, единственный серьезный недостаток таких вентиляторов — это их высокая стоимость. Но справедливости ради следует отметить, что в технологическом отношении высококачественные миниатюрные подшипники качения являются очень сложными и трудоемкими изделиями (стоимость одного высокоточного подшипника качения может достигать 3-5 долларов и даже выше, в то время как стоимость миниатюрного подшипника скольжения обычно не превышает 10 центов). Поэтому высокие цены, по которым предлагаются качественные вентиляторы — явление вполне объективное и неизбежное. Тут уж ничего не поделаешь. Как ни крути, здоровье компьютерной системы дороже.

Что ж, давайте на этой оптимистичной ноте завершим наши разборки с электромеханическими нюансами вентиляторов, и, собравшись с силами, сделаем последний рывок на сегодня — рассмотрим еще один важный технический нюанс, но уже аэродинамического плана.

Характеристическая кривая (расходная характеристика) вентилятора

На прошлом занятии мы уже рассмотрели одну из важнейших характеристик любого вентилятора — его производительность (так называемый расход). Этот параметр обязательно указывается в технических документах на вентиляторы и позволяет объективно оценить их эффективность. Однако, оперируя этими значениями, многие пользователи зачастую забывают, что указанная производительность на деле имеет место только в предельно идеализированной ситуации, когда вентилятор работает, так сказать, на открытом воздухе, и на пути воздушного потока нет никаких препятствий. В реальных эксплуатационных условиях вентилятор обязательно устанавливается в какой-либо системе, будь то компьютерный корпус, блок питания, радиатор, воздуховод и т.п. Совершенно очевидно, что все перечисленные объекты в значительной мере препятствуют движению воздушного потока, формируемого вентилятором (говоря по-научному, гидравлическое сопротивление рабочей сети вентилятора отлично от нуля). Как результат, реальная производительность вентилятора в конкретных эксплуатационных условиях может быть намного ниже тех значений объемной скорости воздушного потока, что обычно указаны на упаковках вентиляторов, процессорных кулеров и т.п.

Помимо производительности, любой вентилятор обладает еще одним важным аэродинамическим параметром — статическим давлением. Эта величина измеряется в дюймах (или миллиметрах) водяного столба и показывает разность между давлением воздушного потока, формируемого вентилятором и давлением в окружающей среде (атмосферным давлением).

Существует четкая (однозначная) взаимосвязь между производительностью вентилятора и статическим давлением его воздушного потока. Она экспериментально определяется в лабораторных условиях (в специализированной барокамере) и носит название «характеристическая кривая» (в инженерно-технической практике — «расходная характеристика») вентилятора.

Две крайние точки этой кривой как раз и фигурируют в технических документах, публикуемых производителями. В качестве «статического давления» берется давление воздушного потока при его нулевой объемной скорости (нулевой производительности), т.е. когда вентилятор работает «вхолостую» (потока как такового нет вообще). Такой вариант развития событий наблюдается в том случае, если резистивное действие (гидравлическое сопротивление) тракта настолько велико, что вентилятор просто-напросто не может «протолкнуть» воздух в этот самый тракт. Надо отметить, что подобная ситуация в практике систем охлаждения компьютеров не встречается, но в других областях применения вентиляторов все-таки может иметь место.

Ну, а в качестве «производительности» берется объемная скорость потока при нулевом статическом давлении, т.е. когда вентилятор работает в полную силу и не испытывает никаких затруднений со стороны рабочего тракта (по сути этого тракта нет вообще). На практике такая ситуация принципиально неосуществима и может быть смоделирована только в специализированной барокамере, о которой говорилось выше.

Итак, на сегодня, пожалуй, уже достаточно. На нашем следующем занятии мы продолжим разговор о расходной характеристике вентиляторов и подробно разберем вопросы ее практического применения. Спасибо за внимание и до встречи!

Источник

Как продлить срок службы кулера (вентилятора, системы охлаждения) в системном блоке

Как продлить срок службы кулера (вентилятора, системы охлаждения) в системном блоке

Срок службы вентилятора в оборудовании зависит от:
— Вибрации корпуса (вибрация передается на вентилятор, появляется биение, вызывающее износ)
— Загрязненности лопастей ( лопасти загрязняются неравномерно, баланс нарушается, появляется биение, вызывающее износ )
— Загрязнения подшипников вентилятора
— Загрязнение охлаждаемого узла (нарушается отведение тепла, вентилятору приходится работать дольше и/или быстрее вращаться, следовательно быстрее износится)
— Изначального качества и назначения вентилятора ( например, ресурс обычно указан для 40 гр. Цельсия и снижается с ростом температуры отводимого воздуха, не все типы вентиляторов предназначены для работы с сильно нагретым воздухом)
— Производительности вентилятора (например, установка вентилятора с большим диаметром или высотой позволит ему работать на меньших оборотах)
— Типа подшипника вентилятора (компромисс между ценой, надежностью, уровнем шума)
— Настроек частоты вращения ( включение принудительной работы вентилятора на высоких оборотах в оборудовании которое не требует избыточного охлаждения приводит только к шуму, повышенному износу вентилятора излишнему оседанию пыли внутри охлаждаемого узла, при работоспособном соответствующем датчике температуры лучше передать управление скоростью вращением системе)
— Положения некоторых типов вентиляторов ( если втулки заполнены смазкой, например после ремонта или профилактики вентилятора, при горизонтальном положении смазка стечет вниз и масла не окажется между трущимися поверхностями).
— Как часто вентилятор включается и выключается ( управление вентилятором через повторно-кратковременный режим снижает его ресурс, поскольку постоянные запуски и остановки приводят к биениям и износу, лучше снизить обороты)
— Настроек энергосбережения
— Наличие близкорасположенных преград на пути входящего в оборудование потока воздуха и выходящего из него (читаем внимательно правила установки, доносим их до пользователя, поскольку убытки от придвинутой к вентиляционной решетке мебели или стопки бумаг могут быть несопоставимы с мнимым удобством, если правила утеряны, то ориентировочное расстояние не менее двух диаметров выходных вентиляторов, часто можно встретить величину в 100 мм, но чаще она занижена, что бы не увеличивать требования к занимаемому пространству). Ноутбук, лежащий на одеяле быстро перегреется поскольку все отверстия для охлаждения перекрыты, а при постоянных воздействиях таких перегревов скорее всего выйдет из строя его материнская плата или другие компоненты.
— Попадания выброшенного из оборудования горячего воздуха обратно, «подсос» (отсутствие необходимых заглушек и неправильное расположение оборудование относительно других охлаждаемых устройств или преград)
— Согласованность потоков от вентиляторов внутри оборудования (направив потоки двух вентиляторов навстречу друг другу мы ухудшим охлаждение и вынудим систему далее поднимать частоту их вращения, не получая необходимого снижения температуры, а иногда и повышая ее)
— Оптимальности воздуховодов, чистоты воздушных фильтров, наличия прочих преград (например шлейфов) на пути воздушных потоков внутри оборудования
— Несвоевременной замены состарившейся термопасты, ее неправильного выбора или неправильного нанесения)
— Других причин ухудшения теплового режима охлаждаемого оборудования ( например приложений напрасно загружающие процессор, повышенный нагрев из-за старения компонентов)
— Повреждение или деформация вентилятора при монтаже (в инструкции на кулер обычно нарисовано в какое место на нем нельзя нажимать)

Читайте также:  Системы вентиляции производственных помещений это

Соответственно, продлить срок службы вентилятора можно исключив все ( что обычно нерационально, поскольку вентилятор расходный материал, а его задача охлаждать более дорогие компоненты) или часть перечисленных факторов.

Следует корректно понимать и сам ресурс, как некую величину работы в часах, которой достигло обычно 90% партии ( где гарантия, что не попались остальные 10%), при определенной температуре, минимуме вибраций, определенном числом запусков и прочих условиях близких к идеальным. А часть вентиляторов может прослужить значительно дольше заявленного ресурса.
Ресурс вентиляторов в устройствах, рассчитанных на небольшой срок службы или ресурс, может превышать срок службы устройства, заявленный производителем, соответственно его ресурс не заявляется, хотя вентилятор и является ресурсной запасной частью. В некоторых устройствах вентилятор позиционируется как расходный материал.

Большинство современных вентиляторов разрабатываются как необслуживаемые и неремонтопригодные, в условиях избытка времени и тяги к творчеству продлить срок службы вентилятора можно смазкой, но нужно понимать, что если пришлось смазывать, то появился износ, причем обычно окружность может превратиться в овал, появятся задиры на втулке, износ будет расти, подходящую смазку трудно подобрать (исходя из конструктива подшипника, величины износа и оборотов) -не будет необходимого масляного клина. Смазку нужно использовать как временную меру до получения нового вентилятора. Во некоторых дорогостоящих устройствах есть счетчики наработки вентиляторов, при достижении определенной величину устройство уведомляет о необходимости их замены, что бы избежать последующей остановки или отказа из-за перегрева.

Источник

Вентиляторы для компьютерных корпусов

Ни для кого не секрет, что практически вся мощность, потребляемая компьютерным «железом», выделяется в тепло — «греется» процессор, «греется» видеокарта, «греются» жесткие диски и т.п. Как правило, системой потребляется и, соответственно, уходит в тепло от 40% до 80% от номинальной мощности БП, в зависимости от комплектации компьютера различными платами расширения и дополнительными устройствами. Для слабо укомплектованной системы с БП номинальной мощностью всего 200 Вт по минимуму получается уже 80 Вт, уходящих в тепло. Штатного вентилятора в блоке питания для отвода даже такой минимальной мощности может быть недостаточно. Поэтому для эффективного теплоотвода корпуса оборудуют дополнительными вентиляторами (обычно от 1 до 4 вентиляторов). Эти вентиляторы могут быть уже установлены (весьма редкое явление!) или же поставляться опционально (иными словами пользователь сам может их выбрать).

Таким образом, в более или менее путевых корпусах должны присутствовать хотя бы отсеки для установки дополнительных вентиляторов (в хороших корпусах — от двух до четырех отсеков). Если таковых нет, то не стоит обращать внимание на такой корпус. Даже если вентиляторы уже установлены, все-таки неразумно полностью доверять производителю корпуса судьбу процессора, «материнки», видеокарты и других устройств. Обязательно нужно посмотреть, какие это вентиляторы, правильно ли они установлены и соответствуют ли они требованиям качества, производительности, надежности. Не исключаю возможности, что потребуется их заменить. Если же вентиляторы не установлены, то мы можем сразу приступить к рассмотрению вопроса — что и как нам выбрать.

Не все вентиляторы одинаково полезны

Базовые сведения, а также некоторые подробности о вентиляторах и об их использовании можно получить и узнать на странице сайта Термоскоп: О вентиляторах подробнее.

Скажу сразу — не бывает дешевых вентиляторов. Бывают либо довольно плохонькие, либо достаточно дорогие 🙂 Конечно, не все дорогие вентиляторы оказываются действительно качественными — можно наткнуться на подделку (см. ниже) или на second-hand. Но, несомненно то, что большинство совсем уж дешевых вентиляторов ($1-3) всегда не заслуживают оценки выше «удовлетворительно».

Вопрос «brand name или no name«, а точнее «brand name или unknown name» (практически все вентиляторы как-то маркированы, поэтому под no name будем далее подразумевать вентиляторы производства малоизвестных фирм или же совершенно неясного происхождения) по отношению к вентиляторам решается не так уж просто. Сомнительный с виду вентилятор может оказаться просто не маркированным брэндом. И наоборот — предполагаемый брэнд может быть всего лишь архигнусной подделкой. Самое печальное в этой истории — нет абсолютно объективных признаков, позволяющих отличить действительный брэнд от изделий сомнительного качества.

Но могу вас успокоить — есть, все-таки, группа признаков, позволяющих с достаточно высокой степенью достоверности определить, что мы держим в руках действительно качественный вентилятор:

  1. Материал корпуса и крыльчатки. Пластик не должен быть слишком твердым или же слишком мягким. Вентилятор из слишком твердого материала чувствителен к механическим повреждениям (трещины, сколы и т.п.). Вентилятор из мягкого материала не сможет работать нормально при температурах выше 45 град. Алюминиевый же корпус вентилятора — это почти стопроцентная гарантия того, что вы наткнулись на очень хороший брэнд.
  2. Вес вентилятора. Если вам говорят, что это вентилятор на двух подшипниках качения, а он легкий, как пушинка, то вас, мягко скажем, вводят в заблуждение. Хорошие вентиляторы всегда достаточно тяжелые (даже модели 60х60 мм).
  3. Качество внутренней поверхности лопастей крыльчатки. Поверхность должна быть гладкой, близкой к полированной. Если же она «разлохмачена», то вы, скорее всего, наткнулись на no name.
  4. Маркированная проводка электропитания. Как правило, у no name проводка не маркирована.
  5. Дополнительные функции — вывод тахометра, термоконтроль, сигнал останова. Китайские кооператоры не утруждают себя использованием дополнительных функций в вентиляторах.
  6. Шум и вибрация. При покупке обязательно попросите включить вентилятор и подержите его в руках. Высокий уровень шума и вибрации — показатель того, что вентилятор или no name, или отъявленный second-hand.
  7. Качество печатной платы и обмотки электромагнита. С этим проблема. Думаю, ни один продавец не позволит вам вскрыть вентилятор и рассматривать печатную плату.
  8. Качественная маркировка. Не стоит доверять наклейкам, похожим на распечатку на матричном принтере.

Еще один важный вопрос, какой вентилятор лучше: на подшипнике скольжения или же на подшипнике качения? Вам могут ответить: «Конечно вентилятор на подшипнике качения. Лучше даже на двух подшипниках качения! Такой вентилятор долго служит и вообще он намного лучше других». В действительности, это не совсем так, а в некоторых случаях, далеко не так.

Читайте также:  Установка вытяжки в чите

Выбор подшипника качения или же подшипника скольжения определяют два объективных параметра — влажность и температура.

Разберемся с влажностью. Повышенная влажность достаточно серьезно влияет как на подшипник качения, так и на подшипник скольжения. Однако, подшипник скольжения подвержен такому влиянию в меньшей мере. Поэтому, если вы планируете эксплуатировать вентиляторы в условиях повышенной влажности, разумнее будет выбрать вентиляторы именно на подшипниках скольжения.

Аналогичная ситуация получается и в условиях пониженной влажности. Вентиляторы на подшипниках скольжения менее подвержены негативному влиянию излишней сухости воздуха. Соответственно, их и следует использовать в таких условиях. С температурой воздуха дела обстоят несколько иначе. В условиях средних температур (25 — 40 град) вентиляторы на подшипниках качения по сроку службы опережают вентиляторы на подшипниках скольжения лишь на пару тысяч часов. А вот при температуре 50 — 70 град вентиляторы на подшипниках качения проявляют себя в полной мере. В таких условиях срок службы вентиляторов на подшипниках качения в 3 -5 раз выше, чем у вентиляторов на подшипниках скольжения. Речь идет уже о десятках тысяч часов. На моем опыте в серьезно упакованное промышленное устройство были установлены три вентилятора на подшипниках скольжения. Температура в корпусе составляла 55 — 60 град. Уже через полгода начал сбоить один из вентиляторов. Через некоторое время за ним последовали и другие. После установки вентиляторов на подшипниках качения имеем спокойно работающие вентиляторы уже в течение почти трех лет.

Есть еще два достаточно важных фактора. Это уровень шума и, как вы правильно догадались, деньги. Вентилятор на подшипниках качения всегда «шумнее» (некоторые модели значительно шумнее). Да и по деньгам он дороже. В особенности это касается моделей 120×120 мм.

В итоге, если температура в вашем компьютерном корпусе не превышает 40 град или же в помещении слишком влажно или наоборот очень сухо, если вас раздражает шум, если вам, в конце концов, просто жалко честно заработанных «зеленых» — берите вентиляторы на подшипниках скольжения.

Если же вас не волнует шум и финансовый вопрос, если вы владеете супер-навороченной системой, выделяющей 200 Вт тепла и более, если в вашем помещении установлена система комфортного кондиционирования — берите вентиляторы на подшипниках качения.

Правильные вентиляторы

Рекомендую обратить взор на вентиляторы фирм Sunonwealth Electric Machine Industy Co., Ltd. и Nidec America Corporation. Почему? Во-первых, эти две фирмы находятся в ряду признанных лидеров «вентиляторостроения». Ну и, во-вторых, вентиляторы этих фирм широко распространены в России.

Разберемся с модельным рядом вентиляторов Sunon.

На рисунке приведена расшифровка наименования вентиляторов Sunon. В качестве суффикса обычно фигурирует следующее:

  • 6/8 — 6 или 8 полюсов электромагнита
  • A — защита двигателя
  • AS — защита двигателя в комбинации с термоконтролем
  • AM — защита двигателя в комбинации со звуковым сигналом
  • AD — комбинация AS и AM

Вентиляторы Sunon характеризуются отменным качеством и достаточно большим временем наработки на отказ. Это касается и вентиляторов на подшипниках качения, и вентиляторов на подшипниках скольжения. Также, вентиляторы Sunon характеризуются и весьма высокими значениями потока CFM и статического давления. В некоторых моделях применяется и новое технологическое решение — Vapo bearing подшипник.

Модели вентиляторов Sunon на подшипниках скольжения достойные особого внимания:

  • из ряда 60×60 мм — KD1206PTV1 (Vapo bearing подшипник)
  • из ряда 80×80 мм — KD1208PTS1-6 (41.7 CFM)
  • из ряда 92×92 мм — KD12009PTS1 (49 CFM)
  • из ряда 120×120 мм — KD1212PTS1-6A (88 CFM) и KD1212PMSX-6A (119 CFM)

Модели вентиляторов Sunon на подшипниках качения достойные особого внимания:

  • из ряда 80×80 мм — KD1208PTB1-6 (42,5 CFM)
  • из ряда 92×92 мм — KD1209PTB1 (50 CFM)
  • из ряда 120×120 мм — KD1212PTB1-6A (90 CFM) и KD1212PMBX-6A (120 CFM!)

Описания и технические характеристики основных моделей вентиляторов Sunon можно найти на странице www.sunon.com.tw/standard.htm.

Модельный ряд вентиляторов Nidec также достаточно широк. Имя модели формируется из серии и номера модели. Например: серия TA300DC, номер E34399. Все современные вентиляторы Nidec имеют общее наименование — BETA V. Оно отчетливо видно на наклейке. Если же вы встретите что-то типа BETA SL или BETA B, то это или глухой second-hand, или подделка.

Вентиляторы Nidec очень популярны в России. И не зря.

Инженеры Nidec проделали большую работу по модификации стандартной конструкции подшипника скольжения. В результате многие современные вентиляторы Nidec построены на серьезно улучшенном подшипнике скольжения. В таком подшипнике используется дополнительное магнитное поле, уравновешивающее ротор, что делает вентилятор хорошо сбалансированным. А усовершенствованная механическая конструкция подшипника исключает возможность утечки масла. Вентиляторы на улучшенном подшипнике скольжения имеют букву E в номере модели. Например: модель E34399.

Ничего плохого нельзя сказать и о вентиляторах Nidec на подшипниках качения.

Еще одно достоинство, довольно важное для нас — эти вентиляторы несколько дешевле, чем вентиляторы Sunon.

В вентиляторах Nidec могут присутствовать ряд опций, наиболее примечательные из них (дополнительное число после номера модели):

  • 33 — три провода (есть дополнительный вывод тахометра)
  • 34 — четыре провода (вывод тахометра и вывод сигнала останова)

Модели вентиляторов Nidec достойные особого внимания:

  • из ряда 60×60 мм (TA225DC) — M34418 (25 CFM, подшипник качения) и E34390 (улучшенный подшипник скольжения)
  • из ряда 80×80 мм (TA300DC) — M33406 (43 CFM, подшипник качения) и E34398 (улучшенный подшипник скольжения)
  • из ряда 120×120 мм (TA450DC) — B34262 (130 CFM!)

Описания и технические характеристики моделей вентиляторов Nidec можно найти на странице http://www.nidec.com/fans.html.

Все сказанное выше практически в равной степени относится и к вентиляторам для компьютерных блоков питания. Некоторые торгующие организации иногда разделяют вентиляторы на отдельные категории — или для БП, или дополнительные в корпус. На самом деле такого разделения нет. Многие модели вентиляторов можно эффективно использовать как в БП, так и в корпусе.

Эта статья ни в коей мере не ограничивает ваш выбор только вентиляторами Sunon и Nidec. Существует масса достойных моделей вентиляторов таких признанных brand name, как Matsushita Electric, NMB Technologies, Indek Corporation, Comair Rotron, Y. S. Tech. Зачастую технические параметры и эксплуатационные характеристики некоторых моделей вентиляторов этих производителей существенно лучше аналогичных моделей Sunon и Nidec. К сожалению, такие вентиляторы не получили широкого распространения в России (при очень сильном желании, конечно, можно найти). Поэтому мы вынуждены выбирать лучшее из того, что реально есть на рынке. А лучшим будет выбор именно вентиляторов Sunon и Nidec.

Источник