Меню

Стандарты искусственной вентиляции легких



Чурсин В.В. Искусственная вентиляция легких (учебно-методическое пособие)

Информация

Физиология дыхания

Анатомия

Проводящие пути

Нос — первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.

В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности — примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани — так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

при низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО2, обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

2. Резервный объем вдоха (РОвд IRV – Inspiratory Reserve Volume) — объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

4. Повышенная вентиляция — любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

12.Асфиксия — остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции — рестриктивный и обструктивный.

Острая дыхательная недостаточность

Классификация ОДН

В соответствии с вышеизложенным (с позиции оказания экстренной помощи), в первую очередь нужно классифицировать ОДН по тяжести.

Наиболее удобно в реаниматологии классифицировать все синдромы, связанные с органной недостаточностью (точнее – с функциональной недостаточностью того или иного органа) по степени компенсации – способности выполнять свои функции. Любую недостаточность можно разделить на компенсированную, субкомпенсированную и некомпенсированную.

Взяв для аналогии классификации Дембо А.Г. (1957), Rossier (1956), Малышева В.Д. (1989) можно разделить ОДН на:

Компенсированную, когда при умеренном напряжении функции дыхания поддерживается нормальный газовый состав крови и удовлетворяются метаболические потребности организма. Клинически в состоянии покоя ЧДД до 30 в мин, газы крови и КЩС в норме, ЖЕЛ снижено до 30-60 мл/кг. По Дембо — 1 вид, по Rossier – латентная, по Малышеву — I стадия. Сюда же можно отнести и состояния, при которых повышается потребность организма в кислороде в покое, хотя правильнее это состояние называть «компенсаторная ОДН».

Субкомпенсированную, когда при выраженном напряжении функции дыхания поддерживается нормальный газовый состав крови и уже не полностью удовлетворяются метаболические потребности организма. Клинически в состоянии покоя ЧДД более 30 в мин, газы крови – РаО2 в норме или несколько снижено, РаСО2 может быть снижено, КЩС – метаболический ацидоз, ЖЕЛ менее 30 мл/кг. По Дембо — 2 вид, по Rossier – парциальная, по Малышеву — II стадия.

Некомпенсированную, когда при выраженных нарушениях механики дыхания не поддерживается нормальный газовый состав крови и уже абсолютно не удовлетворяются метаболические потребности организма. Клинически в состоянии покоя ЧДД более 35 в мин или брадипноэ ( 1, увеличивается физиологическое мертвое пространство, сокращается площадь реального газообмена. Как итог, прогрессирует гипоксемия и гипоксия, которые невозможно компенсировать развивающимся тахипноэ. Для ТЭЛА, кроме того, характерны выраженные гемодинамические нарушения и явления правожелудочковой недостаточности, что усугубляет ситуацию.

Искусственная вентиляция легких

Однако на практике существенное отрицательное влияние ИВЛ на функцию почек наблюдается достаточно редко. Вероятно, положительное влияние на оксигенацию адекватно проводимой ИВЛ все-таки превалирует над отрицательным антидиуретическим эффектом. И в практике автора, и по данным литературы нередки случаи, когда при развивающейся олигурии на фоне гипоксии различного генеза (ОРДС, артериальная гипотен-зия, гестозы) перевод больных на ИВЛ (в комплексе с другой терапией) сопровождался увеличением диуреза вплоть до полиурии. Надо думать, это связано с устранением гипоксии, снижением уровня катехоламинов, купированием спазма артериол и т. д. Прогрессирование олигурии чаще всего обусловлено другой причиной (например, органическими изменениями почек, нескоррегированной гиповолемией, эндогенной или экзогенной интоксикацией).

Возможное отрицательное действие ИВЛ на функцию печени и ЖКТ связано со следующими механизмами:

Принципы работы аппаратов ИВЛ

Сущность работы любого приспособления или аппарата для проведения ИВЛ заключается в том, что необходимо сделать вдох — вдуть в лёгкие газовую смесь, и потом обеспечить выдох — возможность удаления из лёгких этой смеси.
Принципиальным моментом в обеспечении цикличной работы аппарата ИВЛ является способ переключения с вдоха на выдох и обратно.

Существуют несколько способов осуществления цикличности:

По давлению – аппарат контролирует давление в дыхательном контуре и по заданным величинам давления в конце вдоха и выдоха обеспечивает цикличную ИВЛ. Принцип работы следующий – генератор сжатой газовой смеси (компрессор, турбина) осуществляет вдох – раздувает лёгкие, пока в них не поднимется давление, например до 18 см.вод.ст., после чего срабатывают клапана и лёгким пациента даётся возможность освободиться от избыточного давления, удалив отработанную газовую смесь и снизив давление, например до 0 см вод.ст. Затем опять начинается вдох, опять до достижения 18 см.вод.ст. и т.д. Изменяя величины давления для срабатывания клапанов и производительность генератора можно менять параметры ИВЛ – ДО, ЧД и МОД.

По частоте – аппарат контролирует время фаз дыхательного цикла – вдоха и выдоха. Зная частоту дыхания и соотношения длительности фаз, можно рассчитать длительность вдоха и выдоха. Например, ЧД – 10 в минуту, значит на один дыхательный цикл (вдох+выдох) уходит 6 секунд. При соотношении вдох:выдох (I:E) – 1:2, длительность вдоха составит 2 секунды, выдоха 4 секунды. Принцип работы следующий – генератор сжатой газовой смеси (компрессор, турбина) осуществляет вдох – раздувает лёгкие в течении 2-х секунд, после чего срабатывают клапана и лёгким пациента даётся возможность освободиться от отработанной газовой смеси в течении 4-х секунд. Изменяя ЧД (и/или I:E) и производительность генератора можно менять ДО и МОД.

По объёму – аппарат контролирует объём газовой смеси, нагнетаемой в лёгкие пациента, обеспечивая ДО. Затем даётся время для освобождения от отработанной газовой смеси. Изменяя ДО и производительность генератора (МОД), при заданном соотношении I:E, можно изменять ЧД.

Достаточно давно появился (ещё в РО-5), но только сейчас широко используется ещё один принцип управления цикличностью:
По усилию пациента – когда сам больной инициирует вдох и генератор нагнетает в его лёгкие заданный ДО. В этом случае такие показатели как ЧД и, соответственно МОД, определяются самим пациентом. Эти триггерные (откликающиеся) системы определяют попытки самостоятельного вдоха а) по созданию небольшого отрицательного давления в дыхательном контуре или б) по изменению потока газовой смеси.

В более современном представлении классификацию по принципу обеспечения цикличности можно представить в следующем виде:

Аппараты или режимы ИВЛ с контролем дыхательного объёма. Работая «по частоте», т.е. в рамках расчётного времени на вдох, аппарат рассчитывает с какой скоростью надо доставить заданный ДО в лёгкие пациента.

Аппараты или режимы ИВЛ с контролем давления на вдохе. Работая также «по частоте», т.е. в рамках расчётного времени на вдох, аппарат с определённой скоростью и до достижения установленного давления в дыхательных путях, нагнетает в лёгкие пациента ДО, измеряя его величину.

Источник

Стандарты искусственной вентиляции легких

Традиционная ИВЛ. Аппарат ИВЛ вводит в дыхательные пути больного газовую смесь заданного объема (VCV — Volume Controlled Ventilation) или с заданным давлением (VAPS — Volume Assured Pressure Support). Максимальное давление в дыхательных путях (Рреак) при традиционной ИВЛ зависит от дыхательного объема, длительности вдоха, формы кривой потока, сопротивления дыхательных путей, растяжимости легких и грудной клетки.

Переключение со вдоха на выдох происходит по окончании времени вдоха (Ti) или после вдувания заданного объема. Выдох осуществляется пассивно под действием эластических сил легких и грудной клетки, при этом давление в дыхательных путях начинает снижаться. В случае, когда давление в конце выдоха будет равно атмосферному, такая вентиляция называется ZEEP (Zero end-expiratory pressure). В связи с этим группа методов ИВЛ получила название «ИВЛ с перемежающимся положительным давлением» или IPPV — Intermittent positive pressure ventilation.

ИВЛ с активным выдохом (NEEP — Negative end-expiratory pressure), использовавшееся ранее при гиповолемии у больных со здоровыми легкими и свободной проходимостью дыхательных путей, из-за развития феномена преждевременного закрытия дыхательных путей, снижения растяжимости и нарушения распределения газа в легких в настоящее время практически не применяется.

ИВЛ с положительным давлением в конце выдоха (ПДКВ, PEEP — Positive end-expiratory pressure). При этом режиме вентиляции ПДКВ достигается при помощи либо специального блока (удерживает давление выдоха на заданном уровне или перекрывает линию выдоха дыхательного контура или добавляет дозированный поток газа, препятствующий дальнейшему снижению давления выдоха), либо «водяного замка» (погружение в воду на нужную глубину резинового шланга, надетого на патрубок выдоха).

ПДКВ способствует:
1. Оптимальному распределению воздуха в легких.
2. Предупреждению спадения альвеол и профилактике экспираторного закрытия дыхательных путей.
3. Увеличению функциональной остаточной емкости легких с возрастанием остаточного и резервного объема выдоха.
4. Предупреждению разрушения и восстановлению активности сур-фактанта.
5. Улучшению вентиляции нижних отделов легких и повышению их растяжимости.
6. Предупреждению альвеолярного интерстициального отека.
7. Уменьшению шунтирования крови справа налево за счет включения в вентиляцию спавшихся альвеол.
8. Увеличению отношения Ра02/РiO2, снижению D(A-a)C>2 и Vd/Vt.

Показания к ИВЛ с ПДКВ.
1. Устранение ателектазов легких в конце обширных и длительных операций.
2. Острый респираторный дистресс-синдром, массивная пневмония.
3. Отек легких.
4. Гипоксемия на фоне FiО2>0,8.
5. Выраженные нарушения механических свойств легких. Относительные противопоказания к ИВЛ с ПДКВ — неустраненная гиповолемия и правожелудочковая недостаточность.

Методика применения ИВЛ с ПДКВ следующая.

Начинать увеличение давления целесообразно с 5-7 см Н20 под контролем Sp02, напряжения газов крови и показателей гемодинамики. ПДКВ увеличивают медленно по 2-3 см Н20 каждые 15-20 минут пока возрастает растяжимость легких. Особенно осторожно увелргчивают ПДКВ после 15 см Н2О. У больных с тяжелым острым респираторным дистресс-синдромом (при гипоксемии на фоне Fi02 = 1,0 и ПДКВ = = 15 см Н20) используют «сверхвысокое» ПДКВ — до 20-25см Н20.

При одностороннем поражении легких (пневмония, ателектаз, ушиб легкого и др.) ИВЛ с ПДКВ лучше вьшолнять после поворота больного на здоровый бок.
На фоне ПДКВ возможно уменьшение сердечного выброса, что устраняется либо путем увеличения темпа инфузии, либо применением допамина или добутрекса.
Основанием для снижения уровня ПДКВ являются поддержание Ра02 на уровне 80 мм рт.ст. при FiО2 менее 0,5 и PaO2/Fi02 более 160.

Режим ИВЛ CPPV (Continuous positive pressure ventilation) идентичен режиму PEEP, а режим СРАР (Continuous positive airway pressure -самостоятельное дыхание с постоянно положительным давлением в дыхательных путях) указьшает на то, что при вентиляции в дыхательных путях сохраняется положительное давление.

Источник

Искусственная вентиляция легких (ИВЛ): инвазивная и неинвазивная респираторная поддержка

К искусственной вентиляции легких (ИВЛ) прибегают для оказания помощи пациентам с острой или хронической дыхательной недостаточностью, когда больной не может самостоятельно вдыхать необходимый для полноценного функционирования организма объем кислорода и выдыхать углекислый газ. Необходимость в ИВЛ возникает при отсутствии естественного дыхания или при его серьезных нарушениях, а также во время хирургических операций под общим наркозом.

Что такое ИВЛ?

Искусственная вентиляция в общем виде представляет собой вдувание газовой смеси в легкие пациента. Процедуру можно проводить вручную, обеспечивая пассивный вдох и выдох путем ритмичных сжиманий и разжиманий легких или с помощью реанимационного мешка типа Амбу. Более распространенной формой респираторной поддержки является аппаратная ИВЛ, при которой доставка кислорода в легкие осуществляется с помощью специального медицинского оборудования.

Показания к искусственной вентиляции легких

Искусственная вентиляция легких проводится при острой или хронической дыхательной недостаточности, вызванной следующими заболеваниями или состояниями:

  • хроническая обструктивная болезнь легких (ХОБЛ);
  • муковисцидоз;
  • пневмония;
  • кардиогенный отек легких;
  • рестриктивные патологии легких;
  • боковой амиотрофический синдром;
  • синдром ожирения-гиповентиляции;
  • кифосколиоз;
  • травмы грудной клетки;
  • дыхательная недостаточность в послеоперационный период;
  • дыхательные расстройства во время сна и т. д.

Инвазивная вентиляция легких

Эндотрахеальная трубка вводится в трахею через рот или через нос и подсоединяется к аппарату ИВЛ

При инвазивной респираторной поддержке аппарат ИВЛ обеспечивает принудительную прокачку легких кислородом и полностью берет на себя функцию дыхания. Газовая смесь подается через эндотрахеальную трубку, помещенную в трахею через рот или нос. В особо критических случаях проводится трахеостомия – хирургическая операция по рассечению передней стенки трахеи для введения трахеостомической трубки непосредственно в ее просвет.

Инвазивная вентиляция обладает высокой эффективностью, но применяется лишь случае невозможности помочь больному более щадящим способом, т.е. без инвазивного вмешательства.

Кому и когда необходима инвазивная ИВЛ?

Подключенный к аппарату ИВЛ человек не может ни говорить, ни принимать пищу. Интубация доставляет не только неудобства, но и болезненные ощущения. Ввиду этого пациента, как правило, вводят в медикаментозную кому. Процедура проводится только в условиях стационара под наблюдением специалистов.

Инвазивная вентиляция легких отличается высокой эффективностью, однако интубация предполагает введение пациента в медикаментозную кому. Кроме того, процедура сопряжена с рисками.

Традиционно инвазивную респираторную поддержку применяют в следующих случаях:

  • отсутствие эффекта или непереносимость НИВЛ у пациента;
  • повышенное слюнотечение или образование чрезмерного количества мокроты;
  • экстренная госпитализация и необходимость немедленной интубации;
  • состояние комы или нарушение сознания;
  • вероятность остановки дыхания;
  • наличие травмы и/или ожогов лица.

Как работает аппарат инвазивной ИВЛ?

Принцип работы приборов для инвазивной ИВЛ можно описать следующим образом.

  • Для краткосрочной ИВЛ эндотрахеальная трубка вводится в трахею больного через рот или нос. Для долгосрочной ИВЛ на шее пациента делается разрез, рассекается передняя стенка трахеи и непосредственно в ее просвет помещается трахеостомическая трубка.
  • Через трубку в легкие подается дыхательная смесь. Риск утечки воздуха сведен к минимуму, поэтому больной гарантированно получает нужное количество кислорода.
  • Состояние больного можно контролировать с помощью мониторов, на которых отображаются параметры дыхания, объем подаваемой воздушной смеси, сатурация, сердечная деятельность и др. данные.

Особенности оборудования для инвазивной вентиляции

Оборудование для инвазивной вентиляции легких имеет ряд характерных особенностей.

  • Полностью берет на себя функцию дыхания, т.е. фактически дышит вместо пациента.
  • Нуждается в регулярной проверке исправности всех клапанов, т.к. от работоспособности системы зависит жизнь больного.
  • Процедура должна контролироваться врачом. Отлучение пациента от аппарата ИВЛ также предполагает участие специалиста.
  • Используется с дополнительными аксессуарами – увлажнителями, откашливателями, запасными контурами, отсосами и т. д.

Неинвазивная вентиляция легких

За последние два десятилетия заметно возросло использование оборудования неинвазивной искусственной вентиляции легких. НИВЛ стала общепризнанным и широко распространенным инструментом терапии острой и хронической дыхательной недостаточности как в лечебном учреждении, так и в домашних условиях.

Одним из ведущих производителей медицинских респираторных устройств является австралийская компания ResMed

НИВЛ — что это?

Неинвазивная вентиляция легких относится к искусственной респираторной поддержке без инвазивного доступа (т.е. без эндотрахеальной или трахеостомической трубки) с использованием различных известных вспомогательных режимов вентиляции.

Оборудование подает воздух в интерфейс пациента через дыхательный контур. Для обеспечения НИВЛ используются различные интерфейсы – носовая или рото-носовая маска, шлем, мундштук. В отличие от инвазивного метода, человек продолжает дышать самостоятельно, но получает аппаратную поддержку на вдохе.

Когда применяется неинвазивная вентиляция легких?

Ключом к успешному использованию неинвазивной вентиляции легких является признание ее возможностей и ограничений, а также тщательный отбор пациентов (уточнение диагноза и оценка состояния больного). Показаниями для НИВЛ являются следующие критерии:

  • одышка в состоянии покоя;
  • частота дыхания ЧД>25, участие в респираторном процессе вспомогательной дыхательной мускулатуры;
  • гиперкапния (PaC02>45 и его стремительное нарастание);
  • уровень Ph

Источник

Читайте также:  Чем смазать вентилятор системного блока

Вентилиция и кондиционирование © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Вид гипоксии Причины
Гипоксическая гипоксия