Меню

Статическое давление осевого вентилятора



Статическое давление осевого вентилятора

Вентиляция — это регулируемый воздухообмен, осуществляемый с целью создания в помещениях жилых, общественных и промышленных зданий воздушной среды, благоприятной для здоровья и трудовой деятельности человека, а также для технологических целей. Вентиляционные системы — совокупность технических устройств, обеспечивающих воздухообмен. Побудителем движения воздуха в таких системах является вентилятор. Вентилятор — сложное техническое устройство, преобразующее кинетическую энергию вращающегося колеса в кинетическую и потенциальную энергии перемещаемого объема воздуха. Существует большое многообразие типов вентиляторов, однако в вентсистемах используется всего несколько из них. От выбора типа вентилятора и соответствия поставленной задаче зависят его габариты, потребляемая мощность, технические характеристики, а также шум и некоторые другие свойства вентсистемы.

Типы вентиляторов, используемых в системах вентиляции

Вентиляторы – лопаточные машины, предназначенные для перемещения воздуха или других газов. Вентиляторы условно делятся по развиваемому давлению на вентиляторы:

-среднего давления от 1000Па до 3000Па;

-высокого давления — свыше 3000Па.

Как правило, давление, развиваемое вентиляторами, работающими в вентиляционных системах, не превышает 2000Па. В системах вентиляции и кондиционирования используются следующие типы вентиляторов:

Схемы осевых вентиляторов приведены на рис.1.1. В осевых вентиляторах поток воздуха входит и выходит по оси вращения колеса. Осевые вентиляторы могут состоять из одного колеса (рис. 1.1а), колеса и спрямляющего аппарата (рис.1.1б), входного направляющего аппарата и колеса (рис.1.1в), входного направляющего аппарата, колеса и спрямляющего аппарата (рис.1.1г). Электродвигатель может быть расположен как перед колесом (рис.1.1а), так и за колесом (рис.1.1б), причем аэродинамические характеристики вентиляторов, имеющих одинаковые колеса, будут при этом приблизительно одинаковыми.

Рис.1.1 Схемы осевых вентиляторов:

а) К-колесо; б) К+СА -колесо и спрямляющий аппарат; в) ВНА+К –входной направляющий аппарат и колесо, г) ВНА+К+СА -входной направляющий аппарат, колесо и спрямляющий аппарат; 1-входной коллектор, 2-лопатки колеса, 3-втулка колеса, 4-электродвигатель, 5-корпус, 6,8-спрямляющий аппарат, 7-входной направляющий аппарат

Остаточная закрутка потока является источником потерь, кроме того может быть причиной дополнительных потерь в элементах, сопрягающих вентилятор с сетью на выходе. Для уменьшения закрутки за колесом используется спрямляющий аппарат. При равных частотах вращения и диаметрах колес, осевые вентиляторы создают в 2-3 раза меньшее давление, но имеют большую производительность, чем радиальные вентиляторы, поэтому в вентиляционных системах они используются в основном для перемещения больших объемов воздуха – на вытяжке, для создания противодымного подпора и т. д.

Осевые вентиляторы могут быть одноступенчатыми, двухступенчатыми и многоступенчатыми. В многоступенчатом вентиляторе, созданном на базе нескольких одноступенчатых, происхо-дит увеличение давления примерно пропорционально числу ступеней при прежней производительности. Сущест-вуют также схемы со встречным вращением и вентиляторы с меридио-нальным ускорением потока .

В радиальных колесах поток входит по оси вращения колеса, а выходит в радиальной плоскости. Спиральный корпус служит для преобразования потока на выходе из колеса и дополнительного повышения давления вентилятора. Наиболее широко применяются два типа радиальных колес: колеса с лопатками загнутыми назад и с лопатками загнутыми вперед. Радиальные вентиляторы развивают большее давление, по сравнению с осевыми вентиляторами, так как единице объема перемещаемого воздуха сообщается энергия при переходе от радиуса входа к радиусу выхода колеса.

Радиальный вентилятор имеет два входных отверстия и общее выходное и представляет как бы объединение двух зеркальных вентиляторов в спиральных корпусах. Такого типа вентиляторы имеют приблизительно удвоенную производительность (при том же давлении, что и единичный вентилятор). Многоступенчатые радиальные вентиляторы в системах вентиляции встречаются крайне редко. Среди рассматриваемых типов вентиляторов радиальные – наиболее используемые в вентиляционных системах.

В диаметральном вентиляторе поток входит в колесо в диаметральном направлении (перпендикулярно оси вращения колеса), и выходит также в диаметральном направлении. Угол между входом и выходом потока может быть разным, существуют также вентиляторы с различными углами выхода потока, вплоть до 180°. В диаметральных вентиляторах используются радиальные колеса с вперед загнутыми лопатками, близкие к тем, что используются в радиальных вентиляторах. Отличительной особенностью диаметральных вентиляторов является возможность увеличения длины колеса (осевой протяженности), что дает возможность увеличивать производительность вентилятора (при соответствующем увеличении мощности привода). Несмотря на очевидные компоновочные преимущества, диаметральные вентиляторы не нашли широкого применения в вентсистемах. Это связано с относительно малой аэродинамической эффективностью этих вентиляторов. В основном они используются в маломощных завесах, хотя известны попытки применения диаметральных вентиляторов в воздухоприточных установках.Основные свойства вентилятора, как устройства предназначенного для перемещения воздуха, принято оценивать по его аэродинамическим параметрам: давлению, производительности и потребляемой мощности при нормальных атмосферных условиях, а также коэффициенту полезного действия (КПД).

-давления вентилятора: статическое, полное, динамическое измеряются в Па (1 Па

-производительность вентилятора измеряется в м3/час, м3/с;

-потребляемая мощность вентилятора измеряется в Вт, кВт.

Полное давление вентилятора равно разности полных давлений потока за вентилятором и перед ним:

Читайте также:  Вытяжка simfer beta инструкция по установке

Здесь: P01 — осредненное по входному сечению, P02 -осредненное по выходному сечению полное давление потока.

Статическое давление вентилятора Psv равно разности полного давления Pv и динамического давления вентилятора Pdv:

Динамическое давление вентилятора Pdv определяется по среднерасходной скорости Vвых-вент выхода потока из вентилятора:

Скорость выхода потока из вентилятора (один из способов осреднения):

где Fвых — площадь поперечного сечения выхода потока из вентилятора; Q–производительность вентилятора.

Полный и статический КПД вентилятора:

где N — мощность, потребляемая вентилятором.

Nэл сеть – мощность, пот-ребляемая вентилятором из электрической сети: Nэл сеть= N/ (ηּ ηэл двиг),

где ηэл двиг – КПД электродвигателя.

В данной статье использованы материалы следующих изданий:

  1. Центробежные вентиляторы. Под ред. Т.С. Соломаховой. М., Машиностроение. 1975
  2. И.В.Брусиловский. Аэродинамика осевых вентиляторов. М., Машиностроение. 1984
  3. Проектирование и эксплуатация центробежных и осевых вентиляторов. Москва, ГОСГОРТЕХИЗДАТ. 1959
  4. Центробежные вентиляторы. Под ред. Т.С.Соломаховой. М., «Машиностроение», 1975

Источник

Особенности установки и выбора осевых вентиляторов

Т. С. Соломахова, доктор техн. наук, ведущий научный сотрудник ФГУП «ЦАГИ», председатель ТК 061 «Вентиляция и кондиционирование», otvet@abok.ru

В последнее время осевые вентиляторы широко применяются в вытяжных вентиляционных системах и системах подпора. При этом возникает проблема правильного использования приведенных в каталогах аэродинамических характеристик вентиляторов при различных компоновках в сети. В статье излагаются особенности характеристик осевых вентиляторов, связанные с расчетом динамического давления. Даются рекомендации по выбору осевых вентиляторов при различных вариантах их установки в сети.

Среди различных вариантов установки осевых вентиляторов в вентиляционной сети можно выделить две принципиально разные схемы компоновки:

Компоновка 1 (рис. 1а). Вся сеть с сопротивлением R1 располагается перед входом в вентилятор (вытяжная система). Выход воздуха осуществляется в атмосферу или в большой объем.

Компоновка 2 (рис. 1б). Основная сеть с сопротивлением R2 находится за вентилятором (нагнетательная система). Перед вентилятором также может располагаться участок сети с сопротивлением R1. Такая компоновка осевого вентилятора, встроенного в систему воздуховодов, наиболее широко применяется в вентиляционных системах.

Схемы компоновки осевых вентиляторов в вентиляционной сети: а) сеть располагается на стороне всасывания; б) сеть располагается на стороне нагнетания

Существуют определенные требования к системе воздуховодов, которые непосредственно примыкают к входному и выходному сечениям осевого вентилятора [1]. Эти воздуховоды должны иметь прямолинейные участки длиной не менее 3 калибра перед и не менее 2,5 калибров за вентилятором. За калибр принимается диаметр D корпуса вентилятора. Поперечные сечения примыкающих воздуховодов должны совпадать с поперечным сечением корпуса вентилятора. Несоблюдение указанных выше условий приводит к нарушению устойчивой работы вентилятора и к существенному снижению его паспортной аэродинамической характеристики.

При выборе вентилятора, установленного в сети, кроме его производительности необходимо задавать создаваемое вентилятором давление, которое должно соответствовать сопротивлению сети. Указанные выше схемы установки осевого вентилятора предусматривают различные способы задания необходимого давления.

Полным давлением вентилятора pv в соответствии с ГОСТ 10616–90 [2] называют разность полных давлений при выходе р2 из вентилятора и при входе р1 в него:

Полное давление вентилятора складывается из статического psv и динамического давления pdv:

Именно статическое давление является полезным, поскольку оно расходуется на преодоление сопротивления системы. Поэтому очень важно, чтобы вентиляторы имели высокие значения статического давления. Полное или статическое давление определяется фактически непосредственно из испытаний вентилятора на стенде. Динамическое давление является условной величиной и рассчитывается по среднерасходной осевой составляющей скорости v2 по площади F2 выходного сечения вентилятора:

В соответствии со стандартами [3, 4] для определения аэродинамических характеристик вентиляторов существует четыре типа стендов (рис. 2), соответствующих стандартным компоновкам вентиляторов в сети:

  • А – свободный вход и выход;
  • В – свободный вход и выход в нагнетательный трубопровод;
  • С – вход из всасывающего трубопровода и свободный выход;
  • D – вход из всасывающего трубопровода и выход в нагнетательный трубопровод.

Четыре типа стендов для определения аэродинамических характеристик вентиляторов

При испытаниях осевых вентиляторов все стенды должны иметь вспомогательный вентилятор наддува для получения характеристики вплоть до режимов, близких к нулевому статическому давлению или даже к отрицательному статическому давлению.

В соответствии с европейским регламентом [5], определяющим критерии эффективности вентиляторов, при испытаниях на стендах типа А и С со свободным выходом потока из вентилятора должно рассматриваться измеренное статическое давление. А при испытаниях на стендах типа B и D с трубопроводом на выходе должно рассматриваться измеренное полное давление.

Для расчета динамического давления вентилятора необходимо учитывать фактическое его выходное сечение. На стендах типа А и С за выходное сечение следует принимать кольцевое сечение между корпусом вентилятора и втулкой или двигателем, установленным за колесом вентилятора. На стендах типа В и D, когда на выходе из вентилятора установлен воздуховод, за выходное сечение следует принимать сечение воздуховода в виде круга, отстоящее на некотором расстоянии от выхода из вентилятора. На этом участке происходит переход потока из кольцевого сечения в круговое сечение воздуховода (рис. 3): осуществляется выравнивание поля скоростей. Для осевых вентиляторов рекомендуется принимать эффективную длину L этого участка, равную 1,25 калибра [1].

Присоединенный участок вентилятора с эффективной длиной L

Будем называть этот участок присоединенным участком вентилятора. Выравнивание поля скоростей сопровождается дополнительными потерями давления, которые могут быть условно рассчитаны как потери на удар, по известной формуле Борда-Карно [6] в виде:

где F и F1 – площади кольцевого и кругового сечений. Для осевого вентилятора отношение:

где D – диаметр корпуса, d – диаметр втулки, v = d/D – относительный диаметр втулки.

Формулы (4, 5) для расчета потерь давления в присоединенном участке воздуховода могут быть приведены к простому виду:

Одновременно присоединенный участок играет роль диффузора, и при его наличии статическое давление вентилятора возрастает (рис. 4). Фактически при таких испытаниях на стендах типа B и D определяется характеристика вентилятора с присоединенным участком сети.

Характеристики осевого вентилятора, полученные на стендах типа А и типа В

При выходе из осевого вентилятора, особенно при отсутствии спрямляющего аппарата (СА), установленного за колесом, поток закручен. Кроме осевой имеется окружная составляющая скорости, которая не учитывается при расчете динамического давления вентилятора. Закрутка течения может распространяться на значительное расстояние в воздуховоде. При этом в центре воздуховода возникает возвратное течение по отношению к основному потоку, что сопровождается дополнительными потерями давления на этом участке воздуховода и во всей системе. Поэтому при отсутствии СА установка трубы за вентилятором может привести к значительному снижению полного давления вентилятора без увеличения и даже при возможном снижении статического давления.

Таким образом, при испытаниях одного и того же осевого вентилятора на стендах различных типов можно получить разные характеристики вентилятора (рис. 4). Отличие по величине давления может составлять 10 и более процентов. Поэтому в каталогах, где приводятся характеристики вентиляторов, обычно указывают, на каких стендах получены характеристики и каким образом рассчитывается динамическое давление вентиляторов. Даются дополнительные шкалы со средней скоростью v2 в выходном сечении и с динамическим давлением pdv вентилятора, которые должны использоваться при расчете статического давления.

При выборе вентилятора для конкретной вентиляционной системы правильнее всего пользоваться характеристиками, полученными на стенде, соответствующем компоновке вентилятора в этой системе. Если не удается использовать такую характеристику в каталоге, то необходимо вводить корректировку параметров рабочего режима. Рассмотрим особенности выбора осевого вентилятора в указанных выше стандартных компоновках.

Компоновка 1

Поскольку вся сеть располагается на стороне всасывания и динамическое давление вентилятора не используется, то сопротивление системы складывается из потерь давления во всасывающем участке сети

Выбор вентилятора должен осуществляться по характеристике статического давления, полученной на стенде типа А или С.

Если в каталоге приведена характеристика, полученная на стенде типа В или D, то рабочий режим необходимо корректировать, поскольку вентилятор в системе используется без присоединенного участка. И создаваемое вентилятором полное давление должно возрасти на величину потерь давления ∆pу в присоединенном участке, а динамическое давление должно быть увеличено и рассчитано с учетом кольцевого выходного сечения (рис. 4).

Поскольку доля динамического давления в полном создаваемом давлении велика, особенно при большом диаметре втулки, то существует возможность снизить величину динамического давления путем установки диффузора [7] за выходным сечением вентилятора (рис. 5). При этом снижается полное и динамическое давление, но возрастет статическое давление вентилятора. При этой компоновке также выгодно использовать вентиляторы со СА (рис. 6). За счет раскрутки потока повышается как полное, так и статическое давление вентилятора.

Характеристики вентилятора без диффузора (сплошные линии) и с диффузором (пунктирные линии)

Характеристики осевого вентилятора без спрямляющего аппарата (сплошные линии) и со спрямляющим аппаратом (пунктирные линии)

Известны варианты установки осевого вентилятора практически без сети, когда воздуховод на входе и на выходе отсутствует. Например, при установке вентилятора в окне или в стене. В этом случае сопротивлением системы является динамическое давление pdv вентилятора и рабочий режим соответствует нулевому статическому давлению, то есть максимальной производительности вентилятора.

Компоновка 2

Особенность компоновки состоит в том, что система воздуховодов располагается за выходным сечением вентилятора. Не исключается возможность установки участков сети перед вентилятором. Общее сопротивление системы складывается тогда из потерь давления R1 и R2 во входном и выходном участках сети и динамического давления потока рd при выходе из нагнетательного участка сети:

Выбор вентилятора должен осуществляться по характеристике полного давления, полученной на стенде типа В или D с учетом динамического давления вентилятора, вычисленного по круговому сечению. Если в каталоге приводится характеристика, полученная на стенде А или С с выходным сечением вентилятора в виде кольца, то характеристику нужно корректировать. Кривая полного давления снизится на величину, соответствующую потерям давления ∆pу в присоединенном участке вентилятора. В этом случае к сопротивлению сети необходимо добавить величину потерь давления ∆pу в примыкающем воздуховоде, вычисленную по формуле (6).

Необходимо отметить очень важную особенность осевых вентиляторов: течение за рабочим колесом является закрученным. Кроме отмеченной выше осевой расходной составляющей скорости v2, существует окружная составляющая, причем величина ее уменьшается от втулки к периферии колеса. Средняя величина этой составляющей скорости c2u зависит от нагруженности колеса, от коэффициента создаваемого давления. Чем выше коэффициент давления вентилятора, тем больше величина скорости c2u.

В связи с этим при работе вентилятора с нагнетательным воздуховодом необходимо использовать осевые вентиляторы со спрямляющим аппаратом, особенно в случае высоконапорных машин. Спрямляющий аппарат обеспечивает частичную или полную раскрутку потока, выходящего из колеса. Увеличивается статическое и полное давление вентилятора (рис. 6). Улучшаются условия стабилизированного течения в нагнетательном воздуховоде.

Таким образом, при выборе вентилятора для заданной сети необходимо учитывать, на каком стенде получены приведенные в каталоге или паспорте характеристики, каким образом рассчитывалось динамическое давление вентилятора. В случае несоответствия схемы испытательного стенда с компоновкой вентилятора в сети необходимо осуществлять корректировку параметров рабочего режима вентилятора.

Источник

Большая Энциклопедия Нефти и Газа

Статическое давление — вентилятор

Статическое давление вентилятора , которое представляет собой полное давление вентилятора за вычетом скоростного напора. [1]

Статическое давление вентилятора определяется как разность полного давления Яп и динамического давления Янд в нагнетательном патрубке вентилятора. [2]

Роль статического давления вентилятора довольно значительна и при принятом в настоящее время способе подбора вентилятора по полному давлению об этом забывать не следует. Особенно большое значение это имеет при расчете вентиляционной сети, состоящей только из всасывающей ветви: подсчитывать сопротивление всасывающей ветви и по этой величине подбирать вентилятор, забывая о динамическом давлении на выходе из вентилятора, которое, кстати говоря, может быть весьма значительным, недопустимо. [3]

Таким образом, статическое давление вентилятора , работающего в вентиляционной сети, расходуется на преодоление суммарных потерь давления в сети за вычетом разности между динамическим давлением на выходе воздуха из вентилятора и динамическим давлением на выходе воздуха из сети. [4]

Таким образом, статическое давление вентилятора , работающего в вентиляционной сети, расходуется на преодоление сопротивления сети за вычетом разности между динамическим давлением на выходе воздуха из вентилятора и динамическим давлением на выходе воздуха из сети. [5]

В первом приближении задают статическое давление вентилятора . [6]

Рассмотрим, на что расходуется статическое давление вентилятора , работающего в сети при отсутствии в ней объемов всасывания и нагнетания. [7]

Поскольку при этом pdv йвых, psv — hBC, т.е. статическое давление вентилятора равно сопротивлению сети. [8]

Коэффициент рабочей ( условно) производительности Qp, определяемый абсциссой точки пересечения характеристики статического давления вентилятора и кривой аэродинамического сопротивления электрической машины. [9]

Если вентилятор подобран правильно, то сопротивление системы изменяется пропорционально квадрату расхода воздуха ( см. рис. 20 — 5), а статическое давление вентилятора приблизительно обратно пропорционально изменению расхода воздуха, что значительно сдерживает тенденцию как к повышению расхода воздуха, так и увеличению нагрузки электродвигателя. Это в свою очередь указывает на нецелесообразность установки электродвигателя с большим запасом. Кроме того, электродвигатели обычно работают более экономично, когда они полностью загружены. Так как расход мощности изменяется пропорционально кубу числа оборотов, для электродвигателя требуется небольшой пусковой момент. [11]

При наличии нагнетательной сети динамическое давление всегда учитывается, и поэтому роль статического давления просто не проявляется в явном виде. Если же вентиляционная система смонтирована без соответствия с ее расчетом, то значение статического давления вентилятора сразу обнаружится. [12]

В этой точке полное давление вентилятора равно потерям полного давления в сети. Если вентилятор работает на всасывание, то динамическое давление вентилятора следует также относить к потерям давления в сети или определять режим работы вентилятора точкой пересечения характеристики сети Др ( 2) с характеристикой psti ( Q) статического давления вентилятора В таких случаях целесообразно на выходе из вентилятора установить диффузор, чтобы уменьшить динамическое давление вентилятора. [14]

Такая диаграмма позволяет определить размеры и частоту вращения вентилятора выбранного типа без проведения каких-либо дополнительных расчетов. Для этого по заданным значениям производительности Q и полного давления рс на диаграмме отмечают точку, соответствующую рабочему режиму вентилятора. Определяют ближайшую к этой точке кривую р0 ( У), по привязной точке которой устанавливают диаметр и частоту вращения вентилятора. Диаграммой нельзя пользоваться, если задано не полное, а статическое давление вентилятора и если рабочий режим вентилятора находится вне рабочего участка характеристики. [15]

Источник

Вентилиция и кондиционирование © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector