Замер расхода воздуха системы вентиляции

Содержание
  1. Вентиляционная лаборатория
  2. YouTube канал Вентиляционная лаборатория
  3. Основная формула замеров
  4. пять ошибок анемометража
  5. Скорость
  6. 1. несоосность с потоком – первая причина ошибки измерений: может и завышать и занижать расход
  7. средняя скорость
  8. средняя скорость в сечении
  9. Площадь сечения
  10. фактическая площадь сечения
  11. 2. неверное определение площади: вторая ошибка, занижает расход
  12. 3. затенение анемометром: третья ошибка, завышает расход
  13. 4. замедление потока в анемометре на малых скоростях: четвёртая ошибка, занижает расход
  14. 5. Струйный характер течения: пятая ошибка, завышает расход
  15. Результат замеров анемометром
  16. Как мерить анемометром?
  17. теоретически
  18. практически
  19. Как мы мерим анемометром?
  20. Как не надо мерить анемометром
  21. YouTube канал Вентиляционная лаборатория
  22. Присоединяйтесь к нам: ВКонтакте, Facebook’e, Instagram
  23. Вентиляционная лаборатория
  24. Как проводить измерение расхода воздуха в воздуховоде?
  25. Для чего необходимо проводить измерение расхода воздушной массы?
  26. Типы измерителей расхода и скорости воздушного потока
  27. Измерение расхода на входной вентиляционной решетке воздуховода
  28. Организация замеров расхода воздуха в воздуховоде
  29. Несколько полезных советов по правильному использованию приборов
  30. Проверка эффективности систем вентиляции. Измерение расхода воздуха с помощью анемометра
  31. Определение расхода воздуха
  32. Как проводится
  33. Ход работ
  34. Результаты

Вентиляционная лаборатория

узкая специализация = высокая эффективность & низкая цена

  • О нас
  • Виды работ
  • Объекты
  • Практика
  • Ссылки
  • Статьи
  • контакты
  • содержание
  • помощь
  • заказ

YouTube канал Вентиляционная лаборатория

Основная формула замеров

пять ошибок анемометража

Анемометрами мы можем сразу замерить только скорость воздушного потока, а контрольным параметром является расход, так что при замерах и при контроле применяем формулу:

L – расход воздуха, м 3 /час
3600 – количество секунд в часе
V – средняя скорость в сечении м/с
F – фактическая площадь сечения, м 2

Всё чаще эта формула заложена в прибор, и он вроде как сам считает расход.

Предположим наиболее простой случай: приточная решётка большого сечения (500х500), за решёткой прямой подводящий воздуховод, ламели тонкие и установлены строго по потоку, анемометр 100 мм.

Неспециалисты видят в определениях только некоторые слова, которые считают знакомыми. Например:

Скорость

Это то, что показывает анемометр, размещённый точно по направлению потока. Направление потока в общем случае неизвестно. Его можно определить, но неспециалиста это только сильнее запутает.

1. несоосность с потоком – первая причина ошибки измерений: может и завышать и занижать расход

средняя скорость

Показание прибора даже при нахождении в одной точке постоянно изменяется. Это связано со свойствами потока – он пульсирует в некоторых пределах, и со схемой прибора. Период пульсаций может быть разным – в практике усреднения за 10 секунд достаточно.

Но это нужно проверить – иногда неудачно спроектированные системы в некоторых режимах работы пульсируют с большим циклом. Опытный наладчик видит это, наблюдая за динамикой показаний прибора. Неопытный может неудачно взять случайное значение.

Если время есть, то цикл можно определить экспериментально.

Кроме среднего в точке измерения нужно среднее по поверхности решётки. В описанном мной идеальном случае пять точек достаточно. Итак, средняя скорость – это средняя из пяти мест средних по времени.

Пять показаний в пяти точках можно записать в блокнот, но если у вашего прибора нет функции усреднения по времени, то за десять секунд одно измерение не выполнить. Нужно усреднить вручную, записывая 10 показаний через равные интервалы времени.

Полученные пять средних – если они не сильно отличаются друг от друга (10-20%) и примерно симметричны относительно центра, дают удовлетворительную среднюю скорость.

Естественно, все правила измерений должны соблюдаться – скорость должна находиться в диапазоне анемометра и т.п.

средняя скорость в сечении

В нашем примере я постарался максимально уменьшить влияние сечения: но фактически сечение, в котором мы мерим скорость не равно геометрическому сечению внутреннего просвета решётки. Часть сечения может быть перекрыта физически или аэродинамически.

Конечно, это не значит, что мерить нельзя: но ошибка измерения может превышать 50%. Совершенно обычной является ситуация, когда принимающие коллеги приходят мерить с анемометром на решётках и находят дикие несоответствия, а при замере в воздуховодах я показываю им правильные и воспроизводимые расходы.

Средняя скорость при неправильном измерении обычно умышленно завышается, размещением анемометра в активной зоне, но в общем случае в зависимости от конкретных ошибок может получится и завышенной, и заниженной.

Я не включил ошибку определения среднего в общий счёт, так как она касается всех видов работ, не только анемометража.

Площадь сечения

Обычно мерят внутренний проем воздухораспределителя. В случае нашей примерной решётки и при использовании анемометра 100 мм, прикладываемого прямо к решётке, это приемлемое допущение, вносящее минимальный вклад в общую ошибку измерения.

фактическая площадь сечения

Нам нужна та площадь, в которой мы определили скорость – так что она зависит от метода измерения. Если вы применяем термоэлектрический анемометр, располагая его на расстоянии 50 мм от решётки, чтобы исключить действие зоны аэродинамического затенения от ламелей решётки, то фактическая площадь мерного сечения будет больше замеренной за счёт расширения струи при выходе из решётки.

Если это не учесть, то в зависимости от периметра решётки и метода измерения расход получится заниженным.

2. неверное определение площади: вторая ошибка, занижает расход

3. затенение анемометром: третья ошибка, завышает расход

У анемометра есть ручка, которая при замере уменьшает эффективную площадь сечения.

4. замедление потока в анемометре на малых скоростях: четвёртая ошибка, занижает расход

когда вы прикладываете анемометр к решётке, это создаёт дополнительное сопротивление, так что часть воздуха перераспределяется так, чтобы обойти анемометр. Сам прибор показывает воздух, который идёт через него. Обходящий поток немного увеличивает скорость вокруг анемометра и не учитывается.

5. Струйный характер течения: пятая ошибка, завышает расход

В нашем идеальном варианте этой ошибки нет.

Если на решётке имеется регулирующее устройство, то замерив сперва при полностью открытом, а потом на частично прикрытом регуляторе, вы получите увеличение скорости, так как сплошной поток, который можно замерить анемометром, разбился на несколько более быстрых струй.

Эти струи раскручивают крыльчатку анемометра, но среднюю скорость потока уже не отражают.

Набрав в грудь пять литров воздуха, вы можете выдуть его через трубочку на крыльчатку анемометра, и по формуле получить больший расход, не сопоставимый с реальным.

Результат замеров анемометром

Пять ошибок при замерах анемометром на решётках действуют разнонаправленно, и случайно могут дать точный замер. Но обычно точность на приточных решётках около 30% в плюс, на вытяжных 50% на занижение.

При контрольных и спорных замерах анемометражом лучше вообще не пользоваться.

Как мерить анемометром?

теоретически

При наличии времени и познаний в прикладной аэродинамике в длительном цикле замеров можно замерить с приемлемой точностью 10-20% даже одним анемометром. Но скорее всего потребуются насадки, так что это индивидуальная работа.

практически

Раньше делали специальные универсальные насадки, сейчас покупают готовые воронки или расходомеры. Внутри себя эти устройства переводят пять ошибок в две других: противодавление и внутреннее воздухораспределение.

Воронки пригодны в определённом диапазоне расходов, в любом случае занижают расход, иногда с этим можно смириться, и работать как будто всё нормально. При тщательной работе нужна калибровка на каждую группу воздухораспределителей.

Расходомеры с компенсацией противодавления позволяют сразу выйти на удовлетворительную точность 10-20%.

Как всегда при применении приборов важна старательность оператора. При замерах анемометром для получения точность 20% нужно много знать и уметь, при замерах расходомером для этой точности достаточно тщательно выполнить инструкции.

Как мы мерим анемометром?

Точные замеры производятся только в воздуховодах, на подходящих участках. Замеры на решётках проводятся в минимальном объёме, желательно с калибровкой по замерам в канале. Анемометром удобно пользоваться при пропорциональном регулировании.

На маленьких решётках и расходах мерим с воронками.

При работе на большом числе однотипных воздухораспределителей делаем переходник – расходомер.

Покупные расходомеры пока меня не устраивают по соотношению цена/эффективность.

Так что получается, что анемометр – это вспомогательный прибор, дополнение к дифференциальному манометру и пневмометрической трубке. Анемометраж – вспомогательный метод.

Как не надо мерить анемометром

YouTube канал Вентиляционная лаборатория

На канале я начал цикл роликов про анемометраж, первый ролик размещён. Для продвинутых спонсоров есть ролик про калибровку воронок.

Присоединяйтесь к нам: ВКонтакте, Facebook’e, Instagram

все виды инструментального контроля вентиляции

Вентиляционная лаборатория

узкая специализация = высокая эффективность & низкая цена

Источник

Как проводить измерение расхода воздуха в воздуховоде?

Экологически чистая атмосфера является важнейшим фактором нормальной жизнедеятельности человека. Поэтому сегодня такое большое значение придается эффективным системам вентиляции и кондиционирования воздуха.

Современная система вентиляции и кондиционирования в помещениях позволяет организовать комфортную жизнедеятельность человека.

Успешная долговечная эксплуатация таких систем невозможна без их качественной настройки и постоянного техобслуживания. Определению эффективности оборудования служат также регулярные измерения различных параметров работы, в том числе и измерение расхода воздуха в воздуховоде. Для этой важной операции разработаны различные методики и приборы.

Для чего необходимо проводить измерение расхода воздушной массы?

Схема вентиляции и кондиционирования в жилом помещении.

Течение воздуха по системе проветривания осуществляется при определенной скорости, на которую влияют многие факторы. Данный параметр, зависящий от конструкции и сечения вентиляционных каналов, является ключевым критерием для выяснения величины расходования воздуха в воздуховоде. Средняя скорость исчисляется на основе замеров уровня динамического давления.

Читайте также:  Механические вентиляции при отсутствии естественной должна обеспечить объем

При этом следует учитывать, что измерение реальной скорости воздуха имеет решающее значение для чистых жилых комнат, которые снабжаются однонаправленным воздушным потоком. В то же время фиксация уровня расхода воздуха является первостепенной операцией для жилых зон с разнонаправленными потоками воздуха.

Целью замеров расхода воздушной массы, перемещающейся в воздуховоде в чистые жилые помещения, является фиксация объема этой массы, прибывающей внутрь комнаты в единицу времени.

Измерения в воздуховоде производятся через специальное технологическое отверстие, точно соответствующее диаметру зонда.

Расход замеряется либо после воздушных фильтров (решеток), либо непосредственно в воздуховоде. В обоих случаях производится измерение скорости движения воздушной массы и учитывается площадь сечения трубы.

Для качественных замеров выбирается достаточно ровный и прямой отрезок трубы. Длина данного участка не может быть меньше 4-5 размеров диаметра после точки местного сопротивления. Вместе с тем до следующего местного сопротивления должно быть 2 или более диаметра канала.

Для фиксации средней скорости воздуха в воздуховоде следует произвести несколько измерений. Их количество зависит от диаметра круглой трубы или от размера сторон прямоугольного канала.

Типы измерителей расхода и скорости воздушного потока

При наладке вентиляционных систем возникает вопрос, какой именно контрольно-измерительный прибор задействовать для замеров скорости воздуха и его расхода в воздуховоде. Следует отметить, что на данный момент рынок специальной аппаратуры для измерения характеристик вентиляции предлагает большое количество самой разнообразной техники, которая учитывает многие факторы естественного и искусственного проветривания помещений.

В частности, при выборе оптимального инструмента необходимо знать, где именно – на вентиляционной входной решетке или прямо в воздуховоде – будут проводиться измерения. Еще важно знать, какие скорости движения воздуха допускаются в трубе, каковы допустимые температура и уровень запыленности вентиляционного канала.

Наиболее популярными типами таких приборов являются следующие:

Конструкция крыльчатого анемометра.

Термоанемометр. Осуществляет измерение скорости воздушной массы. Замеры производятся от специального датчика, который в нагретом состоянии помещается в воздушную струю. Скорость воздуха определяется в зависимости от скорости остывания датчика.

  • Ультразвуковой трехмерный анемометр. Данный прибор помещается в воздушный поток, где определяет скорость воздуха благодаря фиксации разницы частоты звука между выбранными контрольными точками
  • Крыльчатый анемометр. Скорость течения воздуха определяется при измерении скорости вращающейся крыльчатки прибора.
  • Трубка Пито. В данном приборе применяется цифровой электрический манометр. С его помощью в заданной точке потока фиксируется разница между полным и статическим давлением.
  • Балометр. Быстро определяет суммарный расход воздушной массы, концентрируя поток в точке замеров с заранее установленным сечением.
  • Измерение расхода на входной вентиляционной решетке воздуховода

    Схема рабочих датчиков телескопического зонда.

    Наилучшим образом можно осуществить точные замеры объемного расхода воздуха, используя в указанном месте любой подходящий анемометр или термоанемометр. При этом специалисты рекомендуют обратить особое внимание на анемометр, снабженный достаточно большой крыльчаткой. При своем диаметре от 60 до 100 мм она вполне сопоставима с габаритами решетки. Благодаря такому прибору можно достичь оптимального результата при минимальном количестве замеров.

    Вместе с тем упростить процесс измерения и одновременно минимизировать возможные погрешности можно и с помощью дополнительных приспособлений, таких как, например, воронка. Эта несложная по конструкции принадлежность дает возможность проводить более точные измерения всего за один замер, что, как нетрудно догадаться, значительно экономит время работника. Получить доступ для замеров в труднодоступных местах позволит также применение специального телескопического зонда (удлинителя зонда).

    При выборе для работы того или иного оборудования рекомендуется отдавать предпочтение тем приборам, которые имеют опции автоматического исчисления объемного расхода воздуха и определения усредненных показателей по времени и числу замеров. Если у прибора отсутствуют указанные функции, оба этих параметра придется определять своими силами.

    Организация замеров расхода воздуха в воздуховоде

    Процесс замера скорости воздуха с помощью зонда.

    Прежде чем начать измерение непосредственно в воздуховоде, необходимо убедиться в том, что в стенке трубы имеется рабочее отверстие, предназначенное для контрольно-измерительных операций. Его диаметр должен точно соответствовать диаметру зонда.

    Важно точно выбрать и место для замеров. В частности, указанное отверстие следует просверлить на прямом отрезке воздуховода, длина которого должна составлять не менее 5 диаметров трубы. При этом само отверстие надо располагать таким образом, чтобы расстояние до него равнялось 3 диаметрам, а после него – 2 диаметрам воздуховода.

    В отличие от замеров на вентиляционной решетке, при измерении расхода воздуха внутри воздуховода рекомендуется применять крыльчатые анемометры с крыльчаткой небольшого диаметра (16-25 мм). Для данной операции используются также термоанемометры и дифференциальные манометры, снабженные пневмометрической трубкой.

    Здесь следует отметить, что дифференциальные манометры не подходят для проведения замеров в воздуховодах, по которым проходит воздушная масса с заведомо невысокой скоростью (менее 2 м/сек). В этом случае необходимо воспользоваться термоанемометром или крыльчатым анемометром.

    В случае достаточно высокого расположения воздуховода в помещении (например, под потолком комнаты) рекомендуется воспользоваться зондом с телескопической ручкой либо удлинителем зонда. Если при измерениях используется пневмометрическая трубка, то выбирать ее длину следует заранее, учитывая высоту точки измерения.

    Несколько полезных советов по правильному использованию приборов

    Если воздушный поток в воздуховоде характеризуется повышенным уровнем запыленности, термоанемометр и трубку Пито в таком случае лучше не применять. Так как отверстие в трубке, которое принимает суммарное давление потока, имеет маленький диаметр, при воздействии загрязненного воздуха оно может быстро засориться.

    Термоанемометры не подходят для работы в условиях высоких скоростей воздушного потока (более 20 м/сек). Дело в том, что основной термодатчик, который характеризуется повышенной чувствительностью, под сильным давлением воздуха может просто разрушиться.

    Использование контрольно-измерительных приборов для определения расхода воздуха должно осуществляться строго в номинальных температурных диапазонах, указанных в паспортах приборов.

    В газоходах (воздуховодах, в которых протекает в основном нагретый воздух) рекомендуется использовать пневмометрические трубки, корпус которых изготовлен из нержавейки. Использование в указанных трубах оборудования с компонентами из пластика нежелательно по причине возможной деформации корпуса под воздействием высоких температур.

    Проводя замеры скорости и расхода воздуха, надо следить, чтобы чувствительный датчик зонда был всегда сориентирован точно навстречу воздушному потоку. Несоблюдение данного требования ведет к искажению результатов измерений. Причем искажения и неточности будут тем значительнее, чем больше будет степень отклонения датчика от идеального положения.

    Таким образом, правильный выбор контрольно-измерительных приборов для определения расхода воздушных масс в воздуховоде и их надлежащее применение во время работы позволит специалистам составить объективную картину вентиляции помещений. Особую важность этот аспект приобретает, когда речь идет о жилых помещениях.

    Источник

    Проверка эффективности систем вентиляции. Измерение расхода воздуха с помощью анемометра

    Позволяет практически точно определить расход воздуха. При использовании устройства диаметром 60-100 mm можно достичь минимальной погрешности измерений при определении скорости на вентиляционной решетке. Если предстоит снятие показателей внутри воздуховода, следует использовать анемометр с небольшим диаметром: в пределах 16-25 mm. Для определения скорости в труднодоступных участках воздуховодов рекомендуется воспользоваться телескопическим зондом.

    Определение расхода воздуха

    Этап первый. Определение зоны для создания рабочего отверстия. Основное требование — это должен быть прямой участок, минимальная длина которого составляет 5d, расстояние от изгиба трубы до точки сверления — не менее 3d, и до следующей смены направления — от 2d и более. (для справки: d=диаметр воздуховода). Важно! Необходимо позаботиться о том, чтобы диаметр отверстия совпадал с размером зонда.

    Этап второй. Проведение нескольких измерений, количество определяется согласно ГОСТ 12.3.01 8-79. Расчет усредненной скорости в некоторых типах анемометров осуществляется автоматически. Если подобная функция отсутствует, рассчитать среднеарифметическое значение придется самостоятельно.

    При осуществлении измерений стоит учитывать ряд ограничений.
    Не использовать термоанемометры при предполагаемой скорости рабочей среды свыше 20 м/с, так как это может привести к повреждению датчика.
    Трубку Пито не рекомендуется эксплуатировать в рабочей среде с большим количеством засоренности, аналогичное требование выдвигается и в отношении термоанемометра.

    В газопроводах с высокой температурой рабочей среды недопустимо использование устройств, содержащих элементы из пластика, так как он с большой вероятностью может деформироваться.

    Для расчета объемного расхода воздуха следует полученную скорость умножить на площадь сечения трубопровода. Есть и еще один существенный момент.

    Для точного определения скорости следует воспользоваться формулой:
    V=Vср.изм.+t*.+p* Vср. изм
    Значения t и p необходимо взять из таблицы:

    Температура воздуха p t Pa
    50 0,03 0,05 720
    40 0,02 0,03 730
    30 0,01 0,02 740
    20 0,01 750
    10 -0,02 760
    -0,01 -0,03 770
    -10 -0,01 -0,05 780
    -20 -0,07
    -30 -0,09
    -40 -0,11
    -50 -0,13

    Поправки на давление воздуха и его температуру позволяют уменьшить погрешность измерений. Для расчета площади сечения следует использовать формулу:
    S=π(d/2)2
    Объемный расход:
    L=F*Vсредняя
    При измерении скорости воздуха важно правильно расположить датчик устройства. Чем больше его отклонение от рекомендованного, тем существеннее будет погрешность расчетов.

    Работоспособность вентиляции можно проверить, а можно и измерить. Измерять её нужно специальным прибором, который называется — анемометр. Это устройство показывает, с какой же скоростью воздух двигается в вентиляционной шахте. Если иметь на руках расчётную таблицу, возможно подставить в неё показания анемометра и сечение вентиляционной сетки. Таким образом мы получим цифру, которая и покажет, сколько кубометров воздуха за 1 час (м3/ч) будет проходить сквозь решётку вентиляции, сравнив показатели с нормами СНиП , определяется качество работы системы вентиляции. Однако это ещё не всё. В ходе проверки будет большое число условий, которыми нельзя пренебрегать. В противном случае данные измерений будут не правильными.

    Читайте также:  Вентилятор печки туарег 2011

    По методу испытаний воздухообмена жилых домов, замеры нужно проводить при разности температуры внешнего и внутреннего воздуха примерно 13 градусов по Цельсию. К примеру на улице + 10 градусов, а в квартире +23. И при всем этом на улице температура воздуха обязана быть не больше + 5 градусов. Все дело в том, что в тёплое время года вентиляция естественно работает чуть хуже. С этим в принципе ничего нельзя сделать, так как законы физики одинаковы для всех. Если измерить вентиляцию при более высокой температуре чем плюс 5, то данные измерений, которые мы получили, будут некорректными. Так вот: чем теплее будет температура внешнего воздуха, тем хуже будут данные измерения. А в жару, в некоторых ситуациях, даже неплохо работающая вентиляция может вдруг перестать функционировать или даже начать работать в обратную сторону, возникает обратная тяга. Потому, если в квартире, например, +20 градусов, а на улице -5, то весь воздух по вентиляционным каналам будет стремиться из помещения на улицу.

    И если в помещении температура, например, +24, а на улице жара под +30, то, в некоторых ситуациях, велика возможность того, что вентиляция даст обратную тягу, впрочем при этом она не будет неисправной, так как в данных условиях она, по законам природы, и не могла правильно работать. Таким образом, измерить вентиляцию возможно, лишь если она исправно работает. Однако ранее нужно узнать работает ли она. Это может выполнить любой человек – огромных усилий для всего этого не понадобится.

    Для этого нужен малый кусочек туалетной бумаги. Не нужно брать листок газеты, картона или журнала. По какой причине? По существующим нормам на кухню с электрической плиткой, ванную и туалет положено соответственно: 60, 30 и 25 кубометров в час воздуха. А для того, чтобы достичь таких значений, нужна относительно небольшая скорость потока воздуха сквозь вентиляционную решётку и подобное движение возможно обнаружить лишь тоненьким листочком бумаги. Во многих квартирах притягивается и кусок тяжёлой, плотной бумаги, однако это свидетельствует о том, что в данном домевентиляцияработает так сильно, что превышает все необходимые нормы. Тут стоит принимать в расчет ещё одно нужное условие проверки тяги. Именно по этой же методике испытаний воздухообмена жилых домов, при проверке кондиционирования, в одном из помещений приоткрывают окно на 7–10 сантиметров и открывают дверь между этим помещением и кухней или санузлом.

    ООО «Восток Пром» занимается промышленной вентиляцией, ее обслуживанием, паспортизацией и наладкой, проверкой эффективности работы систем вентиляции.

    Наши специалисты производят все необходимые замеры работающих вентиляционных систем. Записи о фактических параметрах работы вентустановок вносятся в паспорта. К паспортам прикладываются протоколы замеров.

    Актов освидетельствования работы систем вентиляции достаточно для контролирующих органов.

    Поэтому, если выездная проверка проведена и выдано предписание, наша организация в кратчайшие сроки оформит всю необходимую документацию.

    Либо, если вы хотите подготовиться к проверке заранее, звоните. Наш специалист произведет все необходимые замеры и оформит необходимую документацию по работе систем вентиляции.

    Обновление паспорта вент-системы

    На 1 систему примерно 3 замера

    Расчет кратности воздухообмена

    Составление паспорта на вент-систему (при его отсутствии)

    1система в одном помещении

    1 система в двух помещениях

    1 система в трех помещениях

    Оформление протокола кратности воздухообмена

    Цена на акты проверки технического состояния вентиляции с инструментальными измерения объемов вытяжки воздуха, считаются отдельно в замисимости ок количества систем для измерений и содержащихся в актах. Делаются замеры воздуха, считается кратность воздухообмена и отклонения (соответствие) от проекта, и все оформаляется в акт обследования.

    При комплексных работах по обновлению паспартов и составлении актов, представлюятся выгодные скидки.

    Цель вентиляции – обеспечение нормативного воздухообмена, нормы разрабатываются на минимальный безопасный для здоровья расход воздуха.

    Таким образом, любое отклонения от нормативного воздухообмена в меньшую сторону вредно для здоровья.

    В помещениях с влаговыделениями, это кухни, душевые, бассейны и т.п. при недостаточной вентиляции запотевают стёкла и, иногда, стены. Это особенно плохо, так как способствует развитию грибков.

    Для запуска систем в эксплуатацию после завершения монтажа на них проводят пусконаладочные работы, в результате которых обеспечиваются проектные показатели воздухообмена.

    Но параметры вентиляционных установок и сетей не остаются постоянными, со временем они изменяются, обычно в сторону уменьшения воздухообмена и разрегулировки сети.

    Чтобы убедиться, что фактические воздухообмены, обеспечиваемые вентиляцией, соответствуют проектным или нормативным, проводятся периодические испытания вентиляции – проверка эффективности.

    Периодичность проверок эффективности

    Нормативная периодичность определяется санитарными нормами, СанПиН, СН и методическими указаниями МУ. Обычно требуются ежегодные проверки для местной вентиляции, раз в три года для общеобменной и завес.

    Кроме того, монтаж сетей выполняется не всегда достаточно хорошо, чтобы гарантировать длительную работу без утечек. При сдаче установок в эксплуатацию они работают, но потом сеть разгерметизируется. Если это происходит в недоступном для осмотров месте, то определить такой дефект можно только замером.

    Как проводится

    Для начала работ заказчик должен составить техническое задание на проверку эффективности вентиляции. Из задания должен быть ясен состав работ, объём работ и дополнительные пожелания заказчика.

    Получив техзадание мы предварительно считаем смету, если цена устраивает, то составляется программа работ и подробная смета. Со всеми новыми для себя заказчиками мы работаем с полной или частичной предоплатой и поэтапной оплатой.

    Ход работ

    По методике выполняются все инструментальные замеры в соответствии с составом работ. Обычно испытываются вентиляторы и сети, этого достаточно для отчёта инспекциям. Для собственных потребностей могут понадобиться и другие замеры.

    Результаты

    Записи о фактических параметрах работы вентустановок вносятся в паспорта. К паспортам прикладываются протоколы замеров. Таблица кратности воздухообмена по помещениям оформляется отдельно.

    Технический отчёт не требуется, но может быть предоставлен, если это есть в техзадании. В отчёте могут содержаться: сводные таблицы параметров вентиляции, балансы, ведомость дефектов, мероприятия по устранению дефектов, одним словом всё, что может сделать исполнитель и из чего могут получить полезную информацию специалисты заказчика.

    Пусконаладка систем вентиляции и их паспортизация проводятся в соответствии с ГОСТ 12.3.018-79 «Системы вентиляционные. Методы аэродинамических испытаний» (далее по тексту ) и СП73.13330.2012 «Внутренние санитарно-технические системы зданий» (далее по тексту ). Стандарт содержит требования к подготовке и проведению испытаний, требования к аппаратуре для измерения скоростей потока, а также определяет положение мерного сечения, количество точек замера и их координаты. Так же, содержит расчет погрешности измерения расхода в зависимости от специфики конкретного проводимого испытания – от испытательного оборудования, характеристик мерного сечения, атмосферных условий. В своде правил , определено значение максимального отклонения фактического расхода воздуха от предусмотренного в проектной документации. Согласно значение отклонения не должно превышать ±8%, однако, на практике, при проведении аэродинамических испытаний не всегда удается получить результаты, удовлетворяющие указанному критерию. А ведь несоответствие расхода на величину более ±8 % является поводом для отказа от приемки системы вентиляции со всеми вытекающими отсюда последствиями. Причин несоответствия может быть множество, но вся ответственность, в конечном счете, ложится на организацию производящую монтаж.
    Однако давайте задумаемся, насколько требования, указанные в , выполнимы при проведении замеров в «полевых» условиях? Существуют объективные предпосылки для пересмотра нормы ± 8 %. Размышления авторов по этому вопросу представлены в данной статье.

    Наиболее вероятные причины отклонений

    Естественно, причин несоответствия замеренного расхода проектному много, и к сожалению, многие из них не зависят от качества монтажа вентиляционной системы или от мастерства и технической оснащенности наладчиков.
    Во-первых, как известно, расход в системе зависит от ее аэродинамического сопротивления. При разработке проекта рассчитывается проектный расход, сопротивление системы воздуховодов, и, исходя из этого, подбирается соответствующий вентилятор. При монтаже вентиляционной системы её фактические размеры будут несколько отличаться от проектных. Некоторые воздуховоды окажутся чуть длиннее, некоторые – чуть короче, радиусы поворота отводов могут оказаться чуть круче, и поэтому отводы будут создавать большее сопротивление. Воздуховоды и фасонные элементы имеют конструктивные допуски, поэтому фактические размеры у разных производителей могут отличаться. Шероховатость стенок каналов тоже может несколько отличаться от той, что предусмотрена расчетом. В совокупности, все эти небольшие конструктивные отклонения вентиляционной сети могут привести к несоответствию расхода в системе расчетному.
    Во-вторых, конструктивные допуски вентиляционной установки могут приводить к отклонению от номинала по расходу воздуха. Данное отклонение регламентируется в и может составлять до ±1,5 % по объемному расходу.
    В-третьих, система вентиляции является открытой системой, и определенным образом реагирует на изменение параметров окружающей среды. Приведем пример. Вентиляционная установка находится на крыше. Зима, мороз. В помещении включено отопление. Перепад температур и перепад высот создают естественную тягу, направленную из помещения. При работе вентиляционной установки эта тяга создает дополнительное сопротивление, и расход воздуха уменьшается.
    Порывы ветра вблизи вентиляционной установки вызывают изменение статического давления. Это приводит к колебанию расхода вентилятора, и, как следствие, скорости в мерном сечении. Поэтому, в ветреную погоду точность аэродинамических испытаний может быть снижена.
    Таким образом, ввиду открытости вентиляционной системы, колебания параметров окружающей среды – давления, температуры, влажности, скорости и направления ветра, оказывают влияние на расход воздуха.
    Следующая большая группа погрешностей связана с самой методикой испытаний, и с техникой проведения измерений. Это погрешности, зависят от точности показаний приборов, точности позиционирования измерительного инструмента, правильности выбора мерного сечения и т.д. Большинство этих погрешностей учтено в при оценке общей погрешности методики.

    Читайте также:  Вытяжка 4 blanc le air

    Погрешность методики определения расхода по ГОСТ 12.3.018

    В соответствии с предельная относительная погрешность определения расхода воздуха в процентах выражается следующей формулой:

    где: σ L – предельная относительная погрешность определения расхода воздуха, связанная с неравномерностью распределения скоростей в мерном сечении; δ φ — среднеквадратичная относительная погрешность, обусловленная неточностью измерений в процессе испытаний.
    Значение погрешности δ φ , зависит от формы воздуховода, количества точек измерения и расстояния от места возмущения потока до мерного сечения. В таблице 1 приведены значения погрешности δ φ , представленные в .

    Как следует из таблицы 1, отклонение по расходу воздуха, вызванное неравномерностью профиля скорости в воздуховоде при расположении мерного сечения на расстоянии 3 гидравлических диаметров (минимально допустимое в расстояние) от места возмущения потока может составить до 15%.

    Значение погрешности определяется по формуле

    где σ p , σ B , σ t – среднеквадратичные погрешности измерений динамического давления Pd потока, барометрического давления Ba, температуры t потока соответственно;

    σ D – среднеквадратичная погрешность определения размеров мерного сечения воздуховода; при 100 мм ≤ Dh300 мм величина σD = ±3 %, при Dh > 300 мм величина σD= ±2 %.

    Значения σp, σB, σt по ГОСТ 12.3.018–79 представлены в табл. 2.

    Как следует из табл. 2, значения погрешностей зависят от класса точности прибора и от того, в какой части шкалы прибора находится замеряемое значение скорости. Однако в последнее время появились приборы, которые имеют более высокий класс точности, а также более точно измеряют скорость воздуха в нижней части шкалы прибора. Возможно, это и послужило поводом к ужесточению требований и снижению значения допустимого отклонения до ±8 % (до 2012 года допустимое отклонение составляло ±10 %).

    Приведем пример расчета предельной погрешности измерения расхода, взятый из ГОСТ 12.3.018–79.

    «. Мерное сечение расположено на расстоянии 3 диаметров за коленом воздуховода диаметром 300 мм (т. е. δD = ±3 %). Измерения производят комбинированным приемником давления в 8 точках мерного сечения (т. е. по табл. 1 σφ = +10 %). Класс точности приборов (дифманометр, барометр, термометр) – 1,0. Отсчеты по всем приборам производятся примерно в середине шкалы, т. е. по табл. 2, σp = σB = σt = ± 1,0 %. Предельная относительная погрешность измерения расхода воздуха, %, составит:

    Таким образом, мы видим, что методика аэродинамических испытаний, описанная в ГОСТ 12.3.018–79, во многих случаях имеет погрешность больше, чем допустимое в СП 73.13330.2012 отклонение замеренного расхода от проектного. В некоторых случаях погрешность может превышать 20 %.

    Влияние турбулентных пульсаций

    В последнее время чувствительность приборов для определения скорости воздуха в воздуховоде значительно выросла. Современные приборы стали чувствительны к пульсациям турбулентного потока, которые, в свою очередь, могут внести некоторую погрешность в результаты измерений.

    Определим погрешность, вносимую турбулентными пульсациями потока. На рис. 1 представлен принципиальный график изменения продольной составляющей мгновенной скорости в произвольной точке сечения в зависимости от времени.

    Из рис. 1 видно, что мгновенную скорость в определенной точке пространства можно представить как сумму осредненной по времени скорости и пульсации скорости:

    В соответствии с теорией Прандтля пульсационная составляющая продольной скорости потока зависит от пути смешения и градиента продольной скорости от оси к стенке. Путь смешения представляет собой длину пробега макроскопического турбулентного объема жидкости (газа) и определяется, как:

    где k – экспериментальная постоянная (постоянная Кармана) k = 0,4; y – расстояние от стенки трубопровода до произвольной точки сечения.

    Пульсационная составляющая определяется выражением:

    Результаты расчета пульсационной составляющей скорости в зависимости от скорости потока в воздуховоде круглого сечения диаметром 400 мм представлены в табл. 3. При этом профиль скорости в воздуховоде принимался в соответствии со степенным законом:

    где u – осредненная по времени скорость в произвольной точке сечения;

    u 0 – осредненная по времени скорость на оси трубопровода;

    R – радиус трубопровода;

    η – эмпирический коэффициент.

    Эмпирический коэффициент η зависит от числа Рейнольдса и определяется по графику (рис. 2).

    Рисунок 2. Зависимость коэффициента n от числа Рейнольдса

    Точки замеров, обозначенные в табл. 3 (y 1 = 0,054D и y 2 = 0,28D), соответствуют координатам замера скорости в круглых воздуховодах согласно ГОСТ 12.3.018–79. Таким образом, при проведении замеров отклонение замеренной скорости от осредненной по времени, вызванное турбулентными пульсациями потока, может составлять ±5. ±7 %.

    Среднеквадратичное отклонение пульсационной составляющей от осредненной по времени скорости при этом будет равно:

    Следовательно, значение среднеквадратичного отклонения составит приблизительно 3,5. 5 %.

    Оценим вероятность получения погрешности измерения скорости более 1 % либо в большую, либо в меньшую сторону от средней скорости. Оценку вероятности проведем для одного, трех и десяти замеров. Для этого условимся, что результаты условных замеров подчиняются закону нормального распределения случайной величины. В таком случае вероятность получить отклонение, превышающее среднее значение скорости более чем на 1 %, составит:

    для одного измерения – 42 %;
    для трех измерений – 7,4 %;
    для десяти измерений – 0,17 %.
    Приведенные выше результаты расчетов показывают, что влияние турбулентных пульсаций скорости может ощущаться лишь при небольшом количестве замеров. Например, измерив скорость в одной точке три раза, мы с вероятностью 7,4 % ошибемся более чем на +1 % или на –1 %. При этом результаты замеров скорости в других точках сечения с большой долей вероятности нивелируют это отклонение.

    Опыт других стран

    Европейские нормы, которые регламентируют приемку систем вентиляции, менее жесткие, чем российские. Например, стандарт EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции» допускает отклонение расхода всей системы от проектного ±15 %, а для каждого отдельного помещения допускается отклонение до ±20 %. При таких нормативах сдача и наладка систем вентиляции становятся вполне решаемой задачей и перестает быть «подвигом».

    В работе предпринята хорошая попытка разобраться в вопросе, какое отклонение расхода считать справедливым. Авторы провели прямое численное моделирование турбулентных течений при числах Рейнольдса, характерных для вентиляционных систем. Численное моделирование проводилось с применением специализированного программного обеспечения. Результаты, полученные по компьютерной модели, сверялись с данными экспериментов . При этом была показана хорошая сходимость модели с опытом. Далее было проведено исследование отклонения фактического расхода, определенного по модели, от замеренного по методикам стандартов ISO 3966, EN 12599, Pr EN 16211 в тех же модельных течениях. Методики указанных выше стандартов аналогичны ГОСТ 12.3.018–79, но отличаются количеством точек замеров и их расположением. Также было исследовано влияния удаления мерного сечения от мест возмущения потока (от отводов). Некоторые результаты, полученные в для прямоугольных воздуховодов, приведены в табл. 4.

    Согласно и профиль скорости в воздуховоде полностью устанавливается лишь на расстоянии, равном приблизительно 45 гидравлическим диаметрам от места возмущения.

    В данной статье были проанализированы основные факторы, влияющие на точность определения расхода в системах вентиляции, причем влияние некоторых из этих факторов было оценено количественно. Например, ГОСТ 12.3.018–79 допускает погрешность описанной в нем методики определения расхода воздуха более 20 %. Отклонение параметров вентиляционной установки от номинала может составлять до ±1,5 % .

    EN 12599, регламентирующий приемку систем вентиляции в Европе, определяет максимальное отклонение замеренного расхода от проектного не более ±15 % для системы в целом, а для отдельных помещений не более ±20 % .

    Ввиду объективных обстоятельств, изложенных в данной статье, критерий приемки системы вентиляции, определенный в СП 73.13330.2012, – максимальное отклонение замеренного расхода от проектного не более ±8 % – является необоснованным, не имеющим под собой никакой – ни научной, ни практической базы. Поэтому авторам представляется необходимым поднять вопрос о пересмотре значения допускаемого отклонения в сторону увеличения согласно последним достижениям теории и практики.

    1. ГОСТ 12.3.018–79 «Системы вентиляционные. Методы аэродинамических испытаний». – М., 1979.
    2. СП 73.13330.2012 «Внутренние санитарно-технические системы зданий». – М., 2012.
    3. ГОСТ ИСО 5802–2012 «Вентиляторы промышленные. Испытания в условиях эксплуатации». – М., 2012.
    4. Абрамович Г. Н. Прикладная газовая динамика. – М.: Госуд. изд. техн.-теор. лит-ры, 1953.
    5. EN 12599 «Вентиляция для зданий – Процедуры проведения испытаний и измерительные методы для передачи систем кондиционирования воздуха и систем вентиляции». 2012.
    6. Care I., Bonthoux F., Fountane J.-R. Measurement of air flow in duct by velocity measurements. EDP Sciences, 2014.
    7. Bonthoux F., Fountane J.-R. Measurement of flow rate in a duct by investigation of the velocity field. Uncertainty linked to position and number of measurement points. – Roomvent, 2002

    СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

    МЕТОДЫ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ

    ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    Система стандартов безопасности труда

    Источник

    Поделиться с друзьями
    Вентилиция и кондиционирование
    Adblock
    detector